Dual-responsive magnetic nanozyme Cu-CuFe₂O₄ leverages mild magnetic hyperthermia and redox dyshomeostasis to potentiate cuproptosis

IF 5.6 2区 医学 Q1 BIOPHYSICS
Yanzhao Diao , Shuaibo Yang , Hong Qu , Laiping Fang , Wangzi Liu , Wei Guo , Wenjing Li , Meng Zhang , Jin Fang , Yudan Du , Lifeng Hang , Hong Li , Guihua Jiang
{"title":"Dual-responsive magnetic nanozyme Cu-CuFe₂O₄ leverages mild magnetic hyperthermia and redox dyshomeostasis to potentiate cuproptosis","authors":"Yanzhao Diao ,&nbsp;Shuaibo Yang ,&nbsp;Hong Qu ,&nbsp;Laiping Fang ,&nbsp;Wangzi Liu ,&nbsp;Wei Guo ,&nbsp;Wenjing Li ,&nbsp;Meng Zhang ,&nbsp;Jin Fang ,&nbsp;Yudan Du ,&nbsp;Lifeng Hang ,&nbsp;Hong Li ,&nbsp;Guihua Jiang","doi":"10.1016/j.colsurfb.2025.115146","DOIUrl":null,"url":null,"abstract":"<div><div>Cuproptosis, a copper-dependent programmed cell death pathway, has shown limited antitumor efficacy due to the tumor responsiveness and copper bioavailability. To address these challenges, we engineered hyaluronic acid functionalized Cu-CuFe₂O₄ nanoparticles (CCIO@HA NPs) that enhance cuproptosis therapy through synergistic exploitation of mild magnetic hyperthermia therapy (MMHT)-induced mitochondrial copper overload and multiple enzyme activities-driven redox dyshomeostasis (RDH). Specifically, the system ensures precise copper accumulation to initiate cuproptosis by coupling pH/MMHT triggered Cu²⁺ release. Simultaneously, CCIO@HA NPs induce RDH <em>via</em> multiple enzyme activities: glutathione oxidase (GSHOx)-like activity depletes GSH to inhibit copper chelation, thereby amplifying mitochondrial copper overload; catalase (CAT)-like activity generates O₂ to alleviate hypoxia, which enhances mitochondrial respiration-driven cuproptosis; and peroxidase (POD)/Fenton like-derived activity produces hydroxyl radical (·OH), driving irreversible RDH. Crucially, MMHT synergizes with RDH to degrade heat shock protein 70 (HSP70), thereby sensitizing tumors to copper cytotoxicity. Furthermore, CCIO@HA NPs enable precise photoacoustic/magnetic resonance imaging-guided therapy. <em>In vitro</em> and <em>in vivo</em> experiments demonstrate an excellent tumor growth inhibition with high biocompatibility. This work establishes a paradigm-shifting strategy that coordinate MMHT with RDH, effectively addressing the dual bottlenecks of cuproptosis in solid tumor therapy.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"257 ","pages":"Article 115146"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525006538","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cuproptosis, a copper-dependent programmed cell death pathway, has shown limited antitumor efficacy due to the tumor responsiveness and copper bioavailability. To address these challenges, we engineered hyaluronic acid functionalized Cu-CuFe₂O₄ nanoparticles (CCIO@HA NPs) that enhance cuproptosis therapy through synergistic exploitation of mild magnetic hyperthermia therapy (MMHT)-induced mitochondrial copper overload and multiple enzyme activities-driven redox dyshomeostasis (RDH). Specifically, the system ensures precise copper accumulation to initiate cuproptosis by coupling pH/MMHT triggered Cu²⁺ release. Simultaneously, CCIO@HA NPs induce RDH via multiple enzyme activities: glutathione oxidase (GSHOx)-like activity depletes GSH to inhibit copper chelation, thereby amplifying mitochondrial copper overload; catalase (CAT)-like activity generates O₂ to alleviate hypoxia, which enhances mitochondrial respiration-driven cuproptosis; and peroxidase (POD)/Fenton like-derived activity produces hydroxyl radical (·OH), driving irreversible RDH. Crucially, MMHT synergizes with RDH to degrade heat shock protein 70 (HSP70), thereby sensitizing tumors to copper cytotoxicity. Furthermore, CCIO@HA NPs enable precise photoacoustic/magnetic resonance imaging-guided therapy. In vitro and in vivo experiments demonstrate an excellent tumor growth inhibition with high biocompatibility. This work establishes a paradigm-shifting strategy that coordinate MMHT with RDH, effectively addressing the dual bottlenecks of cuproptosis in solid tumor therapy.
双响应磁纳米酶Cu-CuFe₂O₄利用轻度磁热疗和氧化还原失衡来增强铜还原。
cuprotosis是一种依赖铜的程序性细胞死亡途径,由于肿瘤的反应性和铜的生物利用度,显示出有限的抗肿瘤功效。为了解决这些挑战,我们设计了透明质酸功能化的Cu-CuFe₂O₄纳米颗粒(CCIO@HA NPs),通过协同利用轻度磁热疗法(MMHT)诱导的线粒体铜过载和多种酶活性驱动的氧化还原失衡(RDH)来增强铜还原治疗。具体来说,该系统确保了精确的铜积累,通过耦合pH/MMHT触发Cu 2 +释放来启动铜还原。同时,CCIO@HA NPs通过多种酶活性诱导RDH:谷胱甘肽氧化酶(GSHOx)样活性耗尽谷胱甘肽抑制铜螯合,从而放大线粒体铜超载;过氧化氢酶(CAT)样活性产生O₂,缓解缺氧,增强线粒体呼吸驱动的cuprotosis;过氧化物酶(POD)/Fenton类活性产生羟基自由基(·OH),驱动不可逆的RDH。关键是,MMHT与RDH协同降解热休克蛋白70 (HSP70),从而使肿瘤对铜细胞毒性敏感。此外,CCIO@HA NPs可以实现精确的光声/磁共振成像引导治疗。体外和体内实验证明具有良好的肿瘤生长抑制作用,具有较高的生物相容性。这项工作建立了一种范式转换策略,协调MMHT和RDH,有效解决实体瘤治疗中铜突的双重瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信