{"title":"Magnesium phosphate in the Cold Bokkeveld (CM2) carbonaceous chondrite","authors":"Martin R. Lee, Tobias Salge, Ian Maclaren","doi":"10.1111/maps.70018","DOIUrl":null,"url":null,"abstract":"<p>Hydrous Mg-phosphate was first described from astromaterials in particles returned from the C-type asteroid Ryugu, and has subsequently been found in samples of the B-type asteroid Bennu and CI1 carbonaceous chondrites. This phase may have been highly significant as a source of bioessential compounds for early Earth. Here, we describe Mg-phosphate from a petrologic type 1 clast (called “C1MP”) in the Cold Bokkeveld CM2 carbonaceous chondrite. This clast has a fine-grained serpentine–saponite matrix that in addition to the Mg-phosphate contains magnetite, Mg-Fe carbonate, calcite, pentlandite, transjordanite, eskolite, and daubréelite/zolenskyite. The Mg-phosphate grains are 7–36 μm in size and together constitute 0.27% of the clast by area. They have a “cracked” texture in scanning electron microscope images, and scanning transmission electron microscopy (STEM) shows that they are highly porous suggesting alteration of originally hydrous grains. The Mg-phosphate has Mg/P and Na/P ratios (atom%) of 1.02 and 0.25, respectively, along with minor concentrations of C, S, Cl, K, Ca, and Fe. Nitrogen was sought because ammonia has been reported from Ryugu Mg-phosphate, but none was detected by X-ray or electron spectroscopy. 4D-STEM shows that the C1MP clast's Mg-phosphate is amorphous, and radial distribution function analysis of electron diffraction patterns reveals that its P-O and Mg-P bonding distances are comparable to newberyite (MgHPO<sub>4</sub>.3H<sub>2</sub>O). The C1MP clast's Mg-phosphate formed from late-stage alkaline brines and subsequently underwent dehydration, amorphization, and partial loss of Na in response to heating in its parent body and/or during laboratory analysis.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 9","pages":"2017-2032"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.70018","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrous Mg-phosphate was first described from astromaterials in particles returned from the C-type asteroid Ryugu, and has subsequently been found in samples of the B-type asteroid Bennu and CI1 carbonaceous chondrites. This phase may have been highly significant as a source of bioessential compounds for early Earth. Here, we describe Mg-phosphate from a petrologic type 1 clast (called “C1MP”) in the Cold Bokkeveld CM2 carbonaceous chondrite. This clast has a fine-grained serpentine–saponite matrix that in addition to the Mg-phosphate contains magnetite, Mg-Fe carbonate, calcite, pentlandite, transjordanite, eskolite, and daubréelite/zolenskyite. The Mg-phosphate grains are 7–36 μm in size and together constitute 0.27% of the clast by area. They have a “cracked” texture in scanning electron microscope images, and scanning transmission electron microscopy (STEM) shows that they are highly porous suggesting alteration of originally hydrous grains. The Mg-phosphate has Mg/P and Na/P ratios (atom%) of 1.02 and 0.25, respectively, along with minor concentrations of C, S, Cl, K, Ca, and Fe. Nitrogen was sought because ammonia has been reported from Ryugu Mg-phosphate, but none was detected by X-ray or electron spectroscopy. 4D-STEM shows that the C1MP clast's Mg-phosphate is amorphous, and radial distribution function analysis of electron diffraction patterns reveals that its P-O and Mg-P bonding distances are comparable to newberyite (MgHPO4.3H2O). The C1MP clast's Mg-phosphate formed from late-stage alkaline brines and subsequently underwent dehydration, amorphization, and partial loss of Na in response to heating in its parent body and/or during laboratory analysis.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.