{"title":"Evolution of Ocular Organ-On-Chip Systems for Disease Modelling and Drug Testing: Where are We Now?","authors":"Sara Trujillo","doi":"10.1002/adtp.202500200","DOIUrl":null,"url":null,"abstract":"<p>Increasing aging population, digital screen use, environmental factors, and sleep disorders have contributed to a rise in ophthalmic diseases. This has soared the demand for better ocular models that are more predictive and can be used to identify new pharmacological targets. Traditional models fail to recapitulate organ-level functionalities and present anatomical differences with human structures, therefore, organ-on-chip systems have emerged to tackle these limitations. Microfluidic devices is engineered to provide the layered structure that the ocular tissues require. This is combined with tight regulation of diffusion gradients and perfusion systems for toxicological analysis and drug screening applications. Incorporation of several cellular layers, motion to mimic blinking, or incorporation of ocular organoids in microfluidic devices are some of the advancements that the field has made. This work reviews the evolution of ocular microphysiological systems and discusses some challenges that could be undertaken by the organ-on-chip community.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202500200","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adtp.202500200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing aging population, digital screen use, environmental factors, and sleep disorders have contributed to a rise in ophthalmic diseases. This has soared the demand for better ocular models that are more predictive and can be used to identify new pharmacological targets. Traditional models fail to recapitulate organ-level functionalities and present anatomical differences with human structures, therefore, organ-on-chip systems have emerged to tackle these limitations. Microfluidic devices is engineered to provide the layered structure that the ocular tissues require. This is combined with tight regulation of diffusion gradients and perfusion systems for toxicological analysis and drug screening applications. Incorporation of several cellular layers, motion to mimic blinking, or incorporation of ocular organoids in microfluidic devices are some of the advancements that the field has made. This work reviews the evolution of ocular microphysiological systems and discusses some challenges that could be undertaken by the organ-on-chip community.