Advanced Maximum Power Point Tracking in Photovoltaic Systems: A Comprehensive Review of Classical, AI-Based, and Metaheuristic Optimization Techniques

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Salam J. Yaqoob, Husam Arnoos, Naseer T. Alwan, Mohit Bajaj, Ietiqal M. Alwan, Mohanad Hasan Ali Aljanabi, Basem Abu Zneid, Mebratu Sintie Geremew
{"title":"Advanced Maximum Power Point Tracking in Photovoltaic Systems: A Comprehensive Review of Classical, AI-Based, and Metaheuristic Optimization Techniques","authors":"Salam J. Yaqoob,&nbsp;Husam Arnoos,&nbsp;Naseer T. Alwan,&nbsp;Mohit Bajaj,&nbsp;Ietiqal M. Alwan,&nbsp;Mohanad Hasan Ali Aljanabi,&nbsp;Basem Abu Zneid,&nbsp;Mebratu Sintie Geremew","doi":"10.1002/eng2.70404","DOIUrl":null,"url":null,"abstract":"<p>Photovoltaic (PV) systems play a vital role in harnessing solar energy, which has become increasingly important due to growing environmental concerns and the pressing demand for renewable energy sources (RES). Maximizing the efficiency and enhancing the performance of PV systems heavily depend on effective optimization techniques, particularly those based on Maximum Power Point Tracking (MPPT). This paper offers a thorough review of various MPPT methodologies, emphasizing their respective contributions to enhancing power extraction in PV systems. Additionally, it explores the intersection of innovation with emerging technologies such as artificial intelligence and metaheuristic optimization in advancing MPPT techniques. The study underscores the pivotal role of MPPT in enhancing PV system efficiency and identifies emerging trends in AI-based techniques and metaheuristic optimization algorithms. The findings demonstrate the exceptional accuracy and flexibility of these strategies in monitoring the elusive Maximum Power Point (MPP) under changing environmental conditions. Moreover, the integration of metaheuristic optimization (MO) based MPPT methods is shown to effectively address the inherent challenges associated with conventional approaches. The paper concludes by emphasizing the potential of metaheuristic algorithms to traverse the intricate and non-linear attributes of PV systems, enabling the extraction of the highest possible power output across different environmental situations.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70404","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Photovoltaic (PV) systems play a vital role in harnessing solar energy, which has become increasingly important due to growing environmental concerns and the pressing demand for renewable energy sources (RES). Maximizing the efficiency and enhancing the performance of PV systems heavily depend on effective optimization techniques, particularly those based on Maximum Power Point Tracking (MPPT). This paper offers a thorough review of various MPPT methodologies, emphasizing their respective contributions to enhancing power extraction in PV systems. Additionally, it explores the intersection of innovation with emerging technologies such as artificial intelligence and metaheuristic optimization in advancing MPPT techniques. The study underscores the pivotal role of MPPT in enhancing PV system efficiency and identifies emerging trends in AI-based techniques and metaheuristic optimization algorithms. The findings demonstrate the exceptional accuracy and flexibility of these strategies in monitoring the elusive Maximum Power Point (MPP) under changing environmental conditions. Moreover, the integration of metaheuristic optimization (MO) based MPPT methods is shown to effectively address the inherent challenges associated with conventional approaches. The paper concludes by emphasizing the potential of metaheuristic algorithms to traverse the intricate and non-linear attributes of PV systems, enabling the extraction of the highest possible power output across different environmental situations.

Abstract Image

光伏系统中先进的最大功率点跟踪:经典、基于人工智能和元启发式优化技术的综合综述
光伏(PV)系统在利用太阳能方面发挥着至关重要的作用,由于日益增长的环境问题和对可再生能源(RES)的迫切需求,太阳能变得越来越重要。光伏发电系统的效率最大化和性能提升在很大程度上依赖于有效的优化技术,特别是基于最大功率点跟踪(MPPT)的优化技术。本文全面回顾了各种MPPT方法,强调了它们各自对提高光伏系统电力提取的贡献。此外,它还探讨了创新与新兴技术的交集,如人工智能和元启发式优化,以推进MPPT技术。该研究强调了MPPT在提高光伏系统效率方面的关键作用,并确定了基于人工智能的技术和元启发式优化算法的新兴趋势。研究结果表明,在不断变化的环境条件下,这些策略在监测难以捉摸的最大功率点(MPP)方面具有卓越的准确性和灵活性。此外,基于元启发式优化(MO)的MPPT方法的集成被证明可以有效地解决与传统方法相关的固有挑战。本文最后强调了元启发式算法的潜力,以遍历光伏系统的复杂和非线性属性,从而能够在不同的环境情况下提取尽可能高的功率输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信