On the Embedded of a Fast, Light and Robust Chaos-Based Cryptosystem in NEXYS4 FPGA Card for Real Time Color Image Security (CBC in N-FPGA-RTCIP)

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fritz Nguemo Kemdoum, Gideon Pagnol Ayemtsa Kuete, Serge Raoul Dzonde Naoussi, Justin Roger Mboupda Pone, Wulfran Fendzi Mbasso
{"title":"On the Embedded of a Fast, Light and Robust Chaos-Based Cryptosystem in NEXYS4 FPGA Card for Real Time Color Image Security (CBC in N-FPGA-RTCIP)","authors":"Fritz Nguemo Kemdoum,&nbsp;Gideon Pagnol Ayemtsa Kuete,&nbsp;Serge Raoul Dzonde Naoussi,&nbsp;Justin Roger Mboupda Pone,&nbsp;Wulfran Fendzi Mbasso","doi":"10.1002/eng2.70319","DOIUrl":null,"url":null,"abstract":"<p>In this work, we put forth a rapid, lightweight, and resilient chaos-based cryptographic system (CBC-RTCIP) designed for the encryption of real-time color images, executed on a Nexys4 FPGA platform. In contrast to traditional methodologies that consider RGB channels independently, our novel approach leverages the inter-channel dependencies through the implementation of dual S-boxes, pixel-channel concatenation, and a pseudo-random number generator based on Chen chaotic oscillator. The system effectively accomplishes substantial confusion and diffusion while maintaining minimal hardware overhead. Empirical findings reveal a near-optimal global Shannon entropy of 7.99943, alongside formidable resistance to differential attacks, evidenced by NPCR and UACI metrics of 99.5978% and 33.4549%, respectively. The design attains an impressive throughput of 1021.44 Mb/s while consuming a mere 115 mW at a clock frequency of 42.56 MHz, thereby affirming its appropriateness for real-time embedded systems and Internet of Things (IoT) applications. Moreover, the system demonstrates resilience against statistical, differential, and data loss attacks, thereby substantiating its robustness and practical applicability. These outcomes position CBC-RTCIP as an efficient and secure methodology for safeguarding visual data in critical fields such as medical imaging and intelligent surveillance.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70319","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we put forth a rapid, lightweight, and resilient chaos-based cryptographic system (CBC-RTCIP) designed for the encryption of real-time color images, executed on a Nexys4 FPGA platform. In contrast to traditional methodologies that consider RGB channels independently, our novel approach leverages the inter-channel dependencies through the implementation of dual S-boxes, pixel-channel concatenation, and a pseudo-random number generator based on Chen chaotic oscillator. The system effectively accomplishes substantial confusion and diffusion while maintaining minimal hardware overhead. Empirical findings reveal a near-optimal global Shannon entropy of 7.99943, alongside formidable resistance to differential attacks, evidenced by NPCR and UACI metrics of 99.5978% and 33.4549%, respectively. The design attains an impressive throughput of 1021.44 Mb/s while consuming a mere 115 mW at a clock frequency of 42.56 MHz, thereby affirming its appropriateness for real-time embedded systems and Internet of Things (IoT) applications. Moreover, the system demonstrates resilience against statistical, differential, and data loss attacks, thereby substantiating its robustness and practical applicability. These outcomes position CBC-RTCIP as an efficient and secure methodology for safeguarding visual data in critical fields such as medical imaging and intelligent surveillance.

Abstract Image

用于实时彩色图像安全(CBC in N-FPGA-RTCIP)的NEXYS4 FPGA卡中嵌入快速、轻便、鲁棒的混沌密码系统
在这项工作中,我们提出了一个快速、轻量级和弹性的基于混沌的加密系统(CBC-RTCIP),设计用于实时彩色图像的加密,在Nexys4 FPGA平台上执行。与独立考虑RGB通道的传统方法相比,我们的新方法通过实现双s盒、像素通道连接和基于Chen混沌振荡器的伪随机数生成器来利用通道间依赖性。该系统在保持最小硬件开销的同时有效地实现了大量的混淆和扩散。实证结果表明,该系统的近最优全局香农熵为7.99943,对差分攻击具有强大的抵抗力,NPCR和UACI指标分别为99.5978%和33.4549%。该设计实现了1021.44 Mb/s的吞吐量,而在42.56 MHz的时钟频率下仅消耗115 mW,从而肯定了其对实时嵌入式系统和物联网(IoT)应用的适用性。此外,该系统显示了对统计、差分和数据丢失攻击的弹性,从而证实了其鲁棒性和实际适用性。这些结果使CBC-RTCIP成为一种有效和安全的方法,用于保护医疗成像和智能监控等关键领域的视觉数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信