Ana Laura Pires de Oliveira, Stella Daniels Kovacs, Carolina Assis da Silva, Caterina do Valle Trotta, Marta Filipa Simões, Rafael Firmani Perna, Cristiane Angélica Ottoni
{"title":"Implementation of a Packed Bed Reactor With Mycological Silver Nanoparticles for Drinking Water Disinfection","authors":"Ana Laura Pires de Oliveira, Stella Daniels Kovacs, Carolina Assis da Silva, Caterina do Valle Trotta, Marta Filipa Simões, Rafael Firmani Perna, Cristiane Angélica Ottoni","doi":"10.1002/clem.70012","DOIUrl":null,"url":null,"abstract":"<p>Basic sanitation and access to drinking water are critical challenges for developing countries. By 2025, water scarcity could affect 50% of the global population. Given this scenario, the search for sustainable and cost-effective water purification methods has driven research into the application of biologically synthesized silver nanoparticles (AgNPs). In this study, AgNPs were produced using the filamentous fungus <i>Aspergillus niger</i> IBCLP20 and encapsulated in calcium alginate (AgNP<sub>IBCLP20/CA</sub>) for use in a packed-bed reactor (PBR) to treat water contaminated with <i>Escherichia coli</i> IPT245 and <i>Pseudomonas aeruginosa</i> IPT365. To evaluate the process parameters for water disinfection, the following variables were assessed: influent bacterial concentration (10<sup>3</sup>, 10<sup>4</sup>, and 10<sup>5</sup> CFU·mL<sup>−1</sup>), temperature (25°C, 30°C, 37°C, and 40°C), reactor occupancy (50%, 75%, and 100%), and volumetric feed flow rate (1.0, 4.0, 7.0, and 10.0 mL·min<sup>−1</sup>). In the experiments, <i>P. aeruginosa</i> IPT365 exhibited greater resistance compared to <i>E. coli</i> IPT245. For both bacteria, the best antimicrobial results were obtained at an influent concentration of 10<sup>3</sup> CFU·mL<sup>−1</sup>. Temperature had no significant impact on the system for either of the bacterial strain. The antimicrobial activity against <i>E. coli</i> IPT245 was observed for all reactor occupancy levels tested, whereas the bactericidal effect against <i>P. aeruginosa</i> IPT365 was only achieved when the PBR was filled to 100% of the catalyst mass. The optimum volumetric flow rate was determined to be 4.0 mL·min<sup>−1</sup>. These findings confirm that the PBR with encapsulated AgNP<sub>IBCLP20/CA</sub> is a promising approach for water disinfection. The maintenance of antimicrobial activity after nanoparticle encapsulation, along with a detailed analysis of operational parameters, supports the feasibility of this method for environmental applications.</p>","PeriodicalId":100258,"journal":{"name":"CleanMat","volume":"2 3","pages":"230-241"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clem.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CleanMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clem.70012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Basic sanitation and access to drinking water are critical challenges for developing countries. By 2025, water scarcity could affect 50% of the global population. Given this scenario, the search for sustainable and cost-effective water purification methods has driven research into the application of biologically synthesized silver nanoparticles (AgNPs). In this study, AgNPs were produced using the filamentous fungus Aspergillus niger IBCLP20 and encapsulated in calcium alginate (AgNPIBCLP20/CA) for use in a packed-bed reactor (PBR) to treat water contaminated with Escherichia coli IPT245 and Pseudomonas aeruginosa IPT365. To evaluate the process parameters for water disinfection, the following variables were assessed: influent bacterial concentration (103, 104, and 105 CFU·mL−1), temperature (25°C, 30°C, 37°C, and 40°C), reactor occupancy (50%, 75%, and 100%), and volumetric feed flow rate (1.0, 4.0, 7.0, and 10.0 mL·min−1). In the experiments, P. aeruginosa IPT365 exhibited greater resistance compared to E. coli IPT245. For both bacteria, the best antimicrobial results were obtained at an influent concentration of 103 CFU·mL−1. Temperature had no significant impact on the system for either of the bacterial strain. The antimicrobial activity against E. coli IPT245 was observed for all reactor occupancy levels tested, whereas the bactericidal effect against P. aeruginosa IPT365 was only achieved when the PBR was filled to 100% of the catalyst mass. The optimum volumetric flow rate was determined to be 4.0 mL·min−1. These findings confirm that the PBR with encapsulated AgNPIBCLP20/CA is a promising approach for water disinfection. The maintenance of antimicrobial activity after nanoparticle encapsulation, along with a detailed analysis of operational parameters, supports the feasibility of this method for environmental applications.