A Neural Network-Based Estimate of the Seasonal to Inter-Annual Variability of the Lake Superior Carbon Cycle

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Daniel E. Sandborn, Elizabeth C. Minor, Jay A. Austin
{"title":"A Neural Network-Based Estimate of the Seasonal to Inter-Annual Variability of the Lake Superior Carbon Cycle","authors":"Daniel E. Sandborn,&nbsp;Elizabeth C. Minor,&nbsp;Jay A. Austin","doi":"10.1029/2024JG008610","DOIUrl":null,"url":null,"abstract":"<p>Lake Superior emits and absorbs CO<sub>2</sub> with significant seasonal and interannual variability, which complicates efforts to constrain its carbon cycle. While it regains atmospheric CO<sub>2</sub> equilibrium on sub-annual scales, resulting in a sustained rise in observed <i>p</i>CO<sub>2</sub> over the last two decades, significant gaps in observation have prevented examination of variability in its carbon cycle on smaller temporal or spatial scales. We developed a reconstruction of daily mean Lake Superior surface water <i>p</i>CO<sub>2</sub> and CO<sub>2</sub> lake-air flux with a spatial resolution of 0.02° <span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n </mrow>\n <annotation> ${\\times} $</annotation>\n </semantics></math> 0.02° in order to infer trends and drivers of carbon cycling in Lake Superior on seasonal to interannual scales. A feed-forward neural network was trained and tested on underway <i>p</i>CO<sub>2</sub> measurements spanning ice-free seasons of 2019–2023, yielding a spatially-comprehensive product describing inorganic carbon dynamics over a five-year period. Lake Superior alternated between net annual CO<sub>2</sub> influx and efflux, with values ranging from <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>0.30</mn>\n <mo>±</mo>\n <mn>0.06</mn>\n <mspace></mspace>\n <msup>\n <mrow>\n <mtext>Tg</mtext>\n <mspace></mspace>\n <mi>C</mi>\n <mspace></mspace>\n <mtext>yr</mtext>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${-}0.30\\pm 0.06\\,{\\text{Tg}\\,\\mathrm{C}\\,\\text{yr}}^{-1}$</annotation>\n </semantics></math> (influx) to <span></span><math>\n <semantics>\n <mrow>\n <mn>0.06</mn>\n <mo>±</mo>\n <mn>0.06</mn>\n <mspace></mspace>\n <msup>\n <mrow>\n <mtext>Tg</mtext>\n <mspace></mspace>\n <mi>C</mi>\n <mspace></mspace>\n <mtext>yr</mtext>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $0.06\\pm 0.06\\,{\\text{Tg}\\,\\mathrm{C}\\,\\text{yr}}^{-1}$</annotation>\n </semantics></math> (efflux) and a 5 year mean net annual <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>0.14</mn>\n <mo>±</mo>\n <mn>0.06</mn>\n <mspace></mspace>\n <msup>\n <mrow>\n <mtext>Tg</mtext>\n <mspace></mspace>\n <mi>C</mi>\n <mspace></mspace>\n <mtext>yr</mtext>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${-}0.14\\pm 0.06\\,{\\text{Tg}\\,\\mathrm{C}\\,\\text{yr}}^{-1}$</annotation>\n </semantics></math>. This refinement of Lake Superior's carbon budget juxtaposes the lake's large seasonal and interannual variability against a mean net annual balance of carbon sources and sinks, and opens the door to further applications of machine learning reconstruction of lacustrine biogeochemical cycling.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008610","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JG008610","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lake Superior emits and absorbs CO2 with significant seasonal and interannual variability, which complicates efforts to constrain its carbon cycle. While it regains atmospheric CO2 equilibrium on sub-annual scales, resulting in a sustained rise in observed pCO2 over the last two decades, significant gaps in observation have prevented examination of variability in its carbon cycle on smaller temporal or spatial scales. We developed a reconstruction of daily mean Lake Superior surface water pCO2 and CO2 lake-air flux with a spatial resolution of 0.02° × ${\times} $ 0.02° in order to infer trends and drivers of carbon cycling in Lake Superior on seasonal to interannual scales. A feed-forward neural network was trained and tested on underway pCO2 measurements spanning ice-free seasons of 2019–2023, yielding a spatially-comprehensive product describing inorganic carbon dynamics over a five-year period. Lake Superior alternated between net annual CO2 influx and efflux, with values ranging from 0.30 ± 0.06 Tg C yr 1 ${-}0.30\pm 0.06\,{\text{Tg}\,\mathrm{C}\,\text{yr}}^{-1}$ (influx) to 0.06 ± 0.06 Tg C yr 1 $0.06\pm 0.06\,{\text{Tg}\,\mathrm{C}\,\text{yr}}^{-1}$ (efflux) and a 5 year mean net annual 0.14 ± 0.06 Tg C yr 1 ${-}0.14\pm 0.06\,{\text{Tg}\,\mathrm{C}\,\text{yr}}^{-1}$ . This refinement of Lake Superior's carbon budget juxtaposes the lake's large seasonal and interannual variability against a mean net annual balance of carbon sources and sinks, and opens the door to further applications of machine learning reconstruction of lacustrine biogeochemical cycling.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

基于神经网络的苏必利尔湖碳循环季节-年际变化的估计
苏必利尔湖排放和吸收的二氧化碳具有显著的季节和年际变化,这使得限制其碳循环的努力变得复杂。虽然它在次年尺度上恢复了大气二氧化碳平衡,导致过去20年观测到的二氧化碳分压持续上升,但观测中的重大空白阻碍了在更小的时间或空间尺度上研究其碳循环的变化。为了推测苏必利尔湖碳循环在季节和年际尺度上的变化趋势和驱动因素,在空间分辨率为0.02°× ${\times} $ 0.02°的条件下重建了苏必利尔湖的日平均地表水pCO2和CO2湖气通量。在2019-2023年无冰季节进行的二氧化碳分压测量中,对前馈神经网络进行了训练和测试,得出了一个描述五年内无机碳动态的空间综合产品。苏必利尔湖每年的二氧化碳净流入和流出交替进行,取值范围为- 0.30±0.06 Tg / yr - 1${-}0.30\pm 0.06\,{\text{Tg}\,\ maththrm {C}\,\text{yr}}^{-1}$(内流)至0.06±0.06 Tg C yr−1 $0.06\pm 0.06\,{\text{Tg}\,\ maththrm {C}\,\text{yr}}^{-1}$(流出)和5年平均净年- 0.14±0.06 TgC yr−1 ${-}0.14\pm 0.06\,{\text{Tg}\,\mathrm{C}\,\text{yr}}^{-1}$。这种对苏必利尔湖碳收支的精细化将湖泊的大季节性和年际变化与碳源和汇的平均年净平衡并列,并为进一步应用机器学习重建湖泊生物地球化学循环打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信