The Rise of Large Language Models: Evolution, Applications, and Future Directions

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Amir Masoud Rahmani, Atefeh Hemmati, Shirin Abbasi
{"title":"The Rise of Large Language Models: Evolution, Applications, and Future Directions","authors":"Amir Masoud Rahmani,&nbsp;Atefeh Hemmati,&nbsp;Shirin Abbasi","doi":"10.1002/eng2.70368","DOIUrl":null,"url":null,"abstract":"<p>Large Language Models (LLMs) have significantly revolutionized natural language processing tasks across various domains; however, understanding how to effectively evaluate and adapt them to specific application contexts remains an open challenge. This paper presents a systematic review of 53 studies that analyze recent trends in rapid context-aware engineering, model selection, and evaluation frameworks for LLMs. Our review identifies methodological gaps, such as limited formalism in context modeling and inconsistent use of performance metrics. We also propose a multidimensional taxonomy that covers context types, rapid adaptation strategies, model alignment techniques, and evaluation approaches. The aim of this survey research is to guide researchers and practitioners in designing scalable, reliable, and context-sensitive LLM systems. The findings offer a foundation for future work on integrating LLMs into real-world systems.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70368","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models (LLMs) have significantly revolutionized natural language processing tasks across various domains; however, understanding how to effectively evaluate and adapt them to specific application contexts remains an open challenge. This paper presents a systematic review of 53 studies that analyze recent trends in rapid context-aware engineering, model selection, and evaluation frameworks for LLMs. Our review identifies methodological gaps, such as limited formalism in context modeling and inconsistent use of performance metrics. We also propose a multidimensional taxonomy that covers context types, rapid adaptation strategies, model alignment techniques, and evaluation approaches. The aim of this survey research is to guide researchers and practitioners in designing scalable, reliable, and context-sensitive LLM systems. The findings offer a foundation for future work on integrating LLMs into real-world systems.

Abstract Image

大型语言模型的兴起:演变、应用和未来方向
大型语言模型(llm)在各个领域显著地改变了自然语言处理任务;然而,了解如何有效地评估和调整它们以适应特定的应用程序上下文仍然是一个开放的挑战。本文对53项研究进行了系统回顾,这些研究分析了法学硕士在快速上下文感知工程、模型选择和评估框架方面的最新趋势。我们的审查确定了方法上的差距,例如上下文建模中的有限形式主义和性能指标的不一致使用。我们还提出了一种多维分类法,包括上下文类型、快速适应策略、模型对齐技术和评估方法。这项调查研究的目的是指导研究人员和实践者设计可扩展的、可靠的和上下文敏感的法学硕士系统。这些发现为未来将法学硕士整合到现实世界系统的工作奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信