Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions

IF 7.1 1区 经济学 Q1 ECONOMICS
Econometrica Pub Date : 2025-09-16 DOI:10.3982/ECTA19153
Richard H. Spady, Sami Stouli
{"title":"Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions","authors":"Richard H. Spady,&nbsp;Sami Stouli","doi":"10.3982/ECTA19153","DOIUrl":null,"url":null,"abstract":"<p>We propose flexible Gaussian representations for conditional cumulative distribution functions and give a concave likelihood criterion for their estimation. Optimal representations satisfy the monotonicity property of conditional cumulative distribution functions, including in finite samples and under general misspecification. We use these representations to provide a unified framework for the flexible maximum likelihood estimation of conditional density, cumulative distribution, and quantile functions at parametric rate. Our formulation yields substantial simplifications and finite sample improvements over related methods. An empirical application to the gender wage gap in the United States illustrates our framework.</p>","PeriodicalId":50556,"journal":{"name":"Econometrica","volume":"93 5","pages":"1885-1913"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.3982/ECTA19153","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrica","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.3982/ECTA19153","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose flexible Gaussian representations for conditional cumulative distribution functions and give a concave likelihood criterion for their estimation. Optimal representations satisfy the monotonicity property of conditional cumulative distribution functions, including in finite samples and under general misspecification. We use these representations to provide a unified framework for the flexible maximum likelihood estimation of conditional density, cumulative distribution, and quantile functions at parametric rate. Our formulation yields substantial simplifications and finite sample improvements over related methods. An empirical application to the gender wage gap in the United States illustrates our framework.

Abstract Image

高斯变换建模与分布回归函数的估计
我们提出了条件累积分布函数的灵活高斯表示,并给出了其估计的凹似然准则。最优表示满足条件累积分布函数的单调性,包括在有限样本和一般错配情况下。我们使用这些表示为条件密度、累积分布和分位数函数在参数速率下的灵活最大似然估计提供了一个统一的框架。与相关方法相比,我们的公式得到了实质性的简化和有限样本的改进。对美国性别工资差距的实证应用说明了我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrica
Econometrica 社会科学-数学跨学科应用
CiteScore
11.00
自引率
3.30%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Econometrica publishes original articles in all branches of economics - theoretical and empirical, abstract and applied, providing wide-ranging coverage across the subject area. It promotes studies that aim at the unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems and that are penetrated by constructive and rigorous thinking. It explores a unique range of topics each year - from the frontier of theoretical developments in many new and important areas, to research on current and applied economic problems, to methodologically innovative, theoretical and applied studies in econometrics. Econometrica maintains a long tradition that submitted articles are refereed carefully and that detailed and thoughtful referee reports are provided to the author as an aid to scientific research, thus ensuring the high calibre of papers found in Econometrica. An international board of editors, together with the referees it has selected, has succeeded in substantially reducing editorial turnaround time, thereby encouraging submissions of the highest quality. We strongly encourage recent Ph. D. graduates to submit their work to Econometrica. Our policy is to take into account the fact that recent graduates are less experienced in the process of writing and submitting papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信