Exploring High-Charge-Density Polyelectrolytes as Membrane Component for Solid Contact Ion-Selective Electrodes

IF 2.3 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Electroanalysis Pub Date : 2025-09-16 DOI:10.1002/elan.70043
Júlia Mestres, Jayaruwan G. Gamaethiralalage, Louis C. P. M. de Smet, Francesca Leonardi
{"title":"Exploring High-Charge-Density Polyelectrolytes as Membrane Component for Solid Contact Ion-Selective Electrodes","authors":"Júlia Mestres,&nbsp;Jayaruwan G. Gamaethiralalage,&nbsp;Louis C. P. M. de Smet,&nbsp;Francesca Leonardi","doi":"10.1002/elan.70043","DOIUrl":null,"url":null,"abstract":"<p>Polyanions have been introduced as replacements for poly(vinyl chloride) (PVC) and potassium tetrakis(4-chlorophenyl)borate (KTpClPB) in the preparation of solid contact potassium-ion selective electrodes (K<sup>+</sup>-ISEs). Partly carboxylated PVC (PVC-COOH) and a fully charged polyanion, sodium poly(4-styrenesulfonate) (NaPSS), were used, culminating in the fabrication of three-component ion-selective membranes (ISMs). The comparison with a PVC-based ISM showed significantly reduced potential drifts during conditioning (from ∼1.3 to ∼0.2 mV/h) and a constant drift rate. Reduced drift is attributed to the presence of counter-charges in the polymer and the large molecular weight of the polyanions, therefore decreasing the leaching of the components resulting in degradation of the membrane. The ISEs utilizing the hydrophilic and highly charged NaPSS as the polymer matrix exhibit similar water layer formation compared to the PVC-based ISEs, and maintained a sensitivity of 54 ± 1 mV/dec and a selectivity over sodium of −3.1 (log <span></span><math></math>) after 1 week in solution, suggesting an alternative approach to the standard membrane preparation protocol.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/elan.70043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elan.70043","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyanions have been introduced as replacements for poly(vinyl chloride) (PVC) and potassium tetrakis(4-chlorophenyl)borate (KTpClPB) in the preparation of solid contact potassium-ion selective electrodes (K+-ISEs). Partly carboxylated PVC (PVC-COOH) and a fully charged polyanion, sodium poly(4-styrenesulfonate) (NaPSS), were used, culminating in the fabrication of three-component ion-selective membranes (ISMs). The comparison with a PVC-based ISM showed significantly reduced potential drifts during conditioning (from ∼1.3 to ∼0.2 mV/h) and a constant drift rate. Reduced drift is attributed to the presence of counter-charges in the polymer and the large molecular weight of the polyanions, therefore decreasing the leaching of the components resulting in degradation of the membrane. The ISEs utilizing the hydrophilic and highly charged NaPSS as the polymer matrix exhibit similar water layer formation compared to the PVC-based ISEs, and maintained a sensitivity of 54 ± 1 mV/dec and a selectivity over sodium of −3.1 (log ) after 1 week in solution, suggesting an alternative approach to the standard membrane preparation protocol.

Abstract Image

Abstract Image

Abstract Image

探索高电荷密度聚电解质作为固体接触离子选择电极的膜组分
在固体接触钾离子选择电极(K+-ISEs)的制备中,引入了聚阴离子作为聚氯乙烯(PVC)和四氯苯基硼酸钾(KTpClPB)的替代品。使用部分羧化PVC (PVC- cooh)和完全带电的聚阴离子聚(4-苯乙烯磺酸钠)(NaPSS),最终制备了三组分离子选择膜(ISMs)。与基于pvc的ISM相比,在调理过程中显著降低了潜在漂移(从1.3 mV/h到0.2 mV/h)和恒定的漂移速率。减少漂移归因于聚合物中反电荷的存在和聚阴离子的大分子质量,因此减少了导致膜降解的成分的浸出。使用亲水和高电荷的NaPSS作为聚合物基质的ise与基于pvc的ise相比,具有相似的水层形成,并且在溶液中放置一周后保持54±1 mV/dec的灵敏度和−3.1 (log)的对钠的选择性,这表明了标准膜制备方案的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electroanalysis
Electroanalysis 化学-电化学
CiteScore
6.00
自引率
3.30%
发文量
222
审稿时长
2.4 months
期刊介绍: Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications. Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信