Attention-Based MAPPO for Large-Scale Sensor Scheduling in Multisource Localisation

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiyue Feng, Tao Tang, Yunpu Zhang, Zhidong Wu
{"title":"Attention-Based MAPPO for Large-Scale Sensor Scheduling in Multisource Localisation","authors":"Qiyue Feng,&nbsp;Tao Tang,&nbsp;Yunpu Zhang,&nbsp;Zhidong Wu","doi":"10.1049/rsn2.70076","DOIUrl":null,"url":null,"abstract":"<p>Large-scale sensor scheduling for multisource localisation is a critical technology in wireless communication control and navigation systems. Most existing heuristic algorithms face challenges in adapting to large-scale sensor systems. To overcome this limitation, we utilise the self-learning capabilities of deep reinforcement learning (DRL) to enable multisource localisation. This paper proposes a large-scale sensor scheduling algorithm based on the multiagent proximal policy optimisation (LSS-MAPPO) framework. We develop a multisource localisation model based on time difference of arrival (TDOA) and design a reward function grounded in the Cramér–Rao lower bound (CRLB). Our approach integrates multihead attention layers into MAPPO to improve the performance of the algorithm. In large-scale sensor scheduling systems, multihead attention mechanisms can effectively handle the high-dimensional state space associated with multisource localisation in multiagent environments. Experimental results under different environments show that LSS-MAPPO improves localisation accuracy compared to the baseline in large-scale sensor scheduling. Notably, it maintains robust performance under partial observability, addressing critical gaps in large-scale dynamic sensor scheduling.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70076","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70076","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale sensor scheduling for multisource localisation is a critical technology in wireless communication control and navigation systems. Most existing heuristic algorithms face challenges in adapting to large-scale sensor systems. To overcome this limitation, we utilise the self-learning capabilities of deep reinforcement learning (DRL) to enable multisource localisation. This paper proposes a large-scale sensor scheduling algorithm based on the multiagent proximal policy optimisation (LSS-MAPPO) framework. We develop a multisource localisation model based on time difference of arrival (TDOA) and design a reward function grounded in the Cramér–Rao lower bound (CRLB). Our approach integrates multihead attention layers into MAPPO to improve the performance of the algorithm. In large-scale sensor scheduling systems, multihead attention mechanisms can effectively handle the high-dimensional state space associated with multisource localisation in multiagent environments. Experimental results under different environments show that LSS-MAPPO improves localisation accuracy compared to the baseline in large-scale sensor scheduling. Notably, it maintains robust performance under partial observability, addressing critical gaps in large-scale dynamic sensor scheduling.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

基于注意力的MAPPO多源定位下大规模传感器调度
面向多源定位的大规模传感器调度是无线通信控制和导航系统中的一项关键技术。大多数现有的启发式算法在适应大规模传感器系统方面面临挑战。为了克服这一限制,我们利用深度强化学习(DRL)的自学习能力来实现多源定位。提出了一种基于多智能体近端策略优化(LSS-MAPPO)框架的大规模传感器调度算法。我们建立了一个基于到达时差(TDOA)的多源定位模型,并设计了一个基于cram - rao下界(CRLB)的奖励函数。我们的方法将多头注意层集成到MAPPO中,以提高算法的性能。在大规模传感器调度系统中,多头关注机制可以有效处理多智能体环境下多源定位相关的高维状态空间。不同环境下的实验结果表明,在大规模传感器调度中,LSS-MAPPO的定位精度比基线有所提高。值得注意的是,它在部分可观察性下保持了鲁棒性,解决了大规模动态传感器调度中的关键缺口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信