{"title":"Shortest Path Planning in Multimodal Metropolitan Transportation Networks Under Timetable and Label Constraints","authors":"Xirong Chen, Jinrun Wang, Haowei Deng, Bin Zhao","doi":"10.1155/atr/3365603","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a label-setting shortest-path algorithm with timetable and label constraints to address the path-planning problem in multimodal urban agglomeration transportation networks. The proposed algorithm addresses the limitations of traditional shortest-path methods, which are often challenged by complex conditions, including transfer constraints, timetable dependencies, and restrictions on the number of transfers. By analyzing the characteristics of urban agglomeration trip chains, this study constructed a multimodal network model incorporating six transportation modes: walking, buses, intercity coaches, metro, intercity railways, and private vehicles. A deterministic finite automaton was introduced to constrain feasible mode sequences, ensuring that path planning aligns with real-world travel patterns. The algorithm incorporates time-window constraints to simulate the effects of static timetables in scheduled transportation modes, such as railways and coaches. By improving the label-correcting algorithm via topological sorting and applying state-dominance rules to reduce redundant computations, it achieves optimal path planning under multiple constraints. Case studies demonstrate that the algorithm effectively balances transfer frequency and travel cost, reducing total cost by approximately 5% while ensuring feasibility, thereby validating the synergistic advantages of multimodal transportation networks. Therefore, the proposed algorithm can theoretically support multimodal traffic selection behavior or mixed traffic network modeling.</p>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/3365603","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/3365603","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a label-setting shortest-path algorithm with timetable and label constraints to address the path-planning problem in multimodal urban agglomeration transportation networks. The proposed algorithm addresses the limitations of traditional shortest-path methods, which are often challenged by complex conditions, including transfer constraints, timetable dependencies, and restrictions on the number of transfers. By analyzing the characteristics of urban agglomeration trip chains, this study constructed a multimodal network model incorporating six transportation modes: walking, buses, intercity coaches, metro, intercity railways, and private vehicles. A deterministic finite automaton was introduced to constrain feasible mode sequences, ensuring that path planning aligns with real-world travel patterns. The algorithm incorporates time-window constraints to simulate the effects of static timetables in scheduled transportation modes, such as railways and coaches. By improving the label-correcting algorithm via topological sorting and applying state-dominance rules to reduce redundant computations, it achieves optimal path planning under multiple constraints. Case studies demonstrate that the algorithm effectively balances transfer frequency and travel cost, reducing total cost by approximately 5% while ensuring feasibility, thereby validating the synergistic advantages of multimodal transportation networks. Therefore, the proposed algorithm can theoretically support multimodal traffic selection behavior or mixed traffic network modeling.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.