USTC-PRM: A Parameterized Approach for Profile Retrieval of Aerosol and Trace Gases

IF 3.4 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Zhiguo Zhang, Qihua Li, Chuan Lu, Xiangguang Ji, Chengzhi Xing, Yanyu Kang, Qihou Hu, Guiqian Tang, Cheng Liu
{"title":"USTC-PRM: A Parameterized Approach for Profile Retrieval of Aerosol and Trace Gases","authors":"Zhiguo Zhang,&nbsp;Qihua Li,&nbsp;Chuan Lu,&nbsp;Xiangguang Ji,&nbsp;Chengzhi Xing,&nbsp;Yanyu Kang,&nbsp;Qihou Hu,&nbsp;Guiqian Tang,&nbsp;Cheng Liu","doi":"10.1029/2025JD043410","DOIUrl":null,"url":null,"abstract":"<p>Profiles of aerosol and trace gases are crucial for assessing air pollution changes, identifying the high-altitude transport of pollutants, and providing a foundation for tracing pollution sources. This study introduces the USTC Parameterized Retrieval Method (USTC-PRM), an algorithm for retrieving profiles of aerosol extinction and trace gas concentration from MAX-DOAS measurements. Using the Radiative Transfer Model (RTM), we evaluate the impact of various observation geometries and profile shapes on the air mass factor (AMF) and establish the look-up table (LUT). USTC-PRM overcomes the underestimation of high-altitude aerosols by optimal estimation method (OEM) since it does not rely on prior profiles. The correlation between the retrieved AOD and AERONET AOD is 0.896, compared to 0.826 for the contrasted OEM. For trace gas retrieval, we propose a real-time LUT establishment method based on retrieved aerosol profiles, significantly reducing memory requirements by over 90% (7.8 GB) and improving the correlation with in situ measurements from 0.867 to 0.911. Additionally, we introduce the concept of look-up error table (LET) to quantify the AMF bias by retrieving it from LUT. We establish a quality evaluation system based on fitting results, LUT errors, and parameter statistics. Using synthetic data and long-term MAX-DOAS measurements, USTC-PRM demonstrates high performance in retrieving profiles under various aerosol scenarios across high, medium, and low extinction levels, while also identifying abnormal situations, such as foggy and cloudy conditions. USTC-PRM provides a robust, accurate and efficient approach for MAX-DOAS profile retrieval, which can be utilized for studying regional transport and tracing atmospheric pollutants.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 18","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JD043410","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JD043410","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Profiles of aerosol and trace gases are crucial for assessing air pollution changes, identifying the high-altitude transport of pollutants, and providing a foundation for tracing pollution sources. This study introduces the USTC Parameterized Retrieval Method (USTC-PRM), an algorithm for retrieving profiles of aerosol extinction and trace gas concentration from MAX-DOAS measurements. Using the Radiative Transfer Model (RTM), we evaluate the impact of various observation geometries and profile shapes on the air mass factor (AMF) and establish the look-up table (LUT). USTC-PRM overcomes the underestimation of high-altitude aerosols by optimal estimation method (OEM) since it does not rely on prior profiles. The correlation between the retrieved AOD and AERONET AOD is 0.896, compared to 0.826 for the contrasted OEM. For trace gas retrieval, we propose a real-time LUT establishment method based on retrieved aerosol profiles, significantly reducing memory requirements by over 90% (7.8 GB) and improving the correlation with in situ measurements from 0.867 to 0.911. Additionally, we introduce the concept of look-up error table (LET) to quantify the AMF bias by retrieving it from LUT. We establish a quality evaluation system based on fitting results, LUT errors, and parameter statistics. Using synthetic data and long-term MAX-DOAS measurements, USTC-PRM demonstrates high performance in retrieving profiles under various aerosol scenarios across high, medium, and low extinction levels, while also identifying abnormal situations, such as foggy and cloudy conditions. USTC-PRM provides a robust, accurate and efficient approach for MAX-DOAS profile retrieval, which can be utilized for studying regional transport and tracing atmospheric pollutants.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

USTC-PRM:气溶胶和微量气体剖面反演的参数化方法
气溶胶和微量气体剖面图对于评估空气污染变化、确定污染物的高空运输以及为追踪污染源提供基础至关重要。本文介绍了usstc参数化检索方法(USTC- prm),一种从MAX-DOAS测量数据中检索气溶胶消光和痕量气体浓度曲线的算法。利用辐射传输模型(RTM),我们评估了不同观测几何形状和剖面形状对气团因子(AMF)的影响,并建立了查找表(LUT)。USTC-PRM通过最优估计方法(OEM)克服了对高空气溶胶的低估,因为它不依赖于先前的剖面。检索到的AOD与AERONET AOD之间的相关性为0.896,而对比OEM的相关性为0.826。对于痕量气体的检索,我们提出了一种基于检索到的气溶胶剖面的实时LUT建立方法,该方法显著降低了90%以上(7.8 GB)的内存需求,并将与原位测量值的相关性从0.867提高到0.911。此外,我们引入了查找误差表(LET)的概念,通过从LUT中检索AMF偏差来量化AMF偏差。我们建立了基于拟合结果、LUT误差和参数统计的质量评价体系。利用合成数据和长期MAX-DOAS测量,USTC-PRM在高、中、低灭绝水平的各种气溶胶情景下检索剖面方面表现出高性能,同时也能识别异常情况,如大雾和多云条件。USTC-PRM提供了一种稳健、准确、高效的MAX-DOAS剖面反演方法,可用于区域输送研究和大气污染物追踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信