A Coral Biomineralization Model for Dual Clumped Isotopes

IF 3 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
James M. Watkins, Qicui Jia, Shuo Zhang, Laurent S. Devriendt, Sang Chen
{"title":"A Coral Biomineralization Model for Dual Clumped Isotopes","authors":"James M. Watkins,&nbsp;Qicui Jia,&nbsp;Shuo Zhang,&nbsp;Laurent S. Devriendt,&nbsp;Sang Chen","doi":"10.1029/2025GC012263","DOIUrl":null,"url":null,"abstract":"<p>Corals exhibit larger and more variable deviations from equilibrium in stable isotope composition (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>13</mn>\n </msup>\n </mrow>\n <annotation> ${\\delta }^{13}$</annotation>\n </semantics></math>C, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>18</mn>\n </msup>\n </mrow>\n <annotation> ${\\delta }^{18}$</annotation>\n </semantics></math>O, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>47</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{47}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>48</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{48}$</annotation>\n </semantics></math>) than most marine biocalcifiers. The disequilibrium isotope effects complicate paleoclimate applications but offer a window into biocalcification processes. Here, we merge a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>47</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{47}$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>48</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{48}$</annotation>\n </semantics></math> isotope model in the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CaCO</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CaCO}}_{3}$</annotation>\n </semantics></math>-DIC-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{H}}_{2}$</annotation>\n </semantics></math>O system (Watkins &amp; Devriendt, 2022, https://doi.org/10.1029/2021gc010200) with a coral biomineralization model (Chen et al., 2018, https://doi.org/10.1016/j.gca.2018.02.032) and compare its outputs to recent isotopic measurements. The model simultaneously fits the data from multiple coral species but requires a different set of parameters for deep-sea corals versus tropical corals. We find that: (a) Deviations from dual clumped isotope equilibrium are due primarily to the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> hydration reaction, the reversibility of which is modulated by the enzyme carbonic anhydrase (CA), the strength of the biological proton pump, and the kinetics of calcification. (b) Optimal data-model agreement for both <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>13</mn>\n </msup>\n </mrow>\n <annotation> ${\\delta }^{13}$</annotation>\n </semantics></math>C-<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>18</mn>\n </msup>\n </mrow>\n <annotation> ${\\delta }^{18}$</annotation>\n </semantics></math>O and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>47</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{47}$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>48</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{48}$</annotation>\n </semantics></math> is achieved where CA increases the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> hydration reaction rate by <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>2,000x for deep-sea corals and by 1–500x for tropical corals. (c) The <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>47</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{47}$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>48</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{48}$</annotation>\n </semantics></math> co-variation slope is sensitive to the cellular <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> flux relative to the seawater DIC flux, with higher cellular <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> and/or lower seawater throughput favoring a shallower slope. (d) For the most part, the modeled compositions of the calcifying fluids (e.g., pH, [<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mtext>CO</mtext>\n <mn>3</mn>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation> ${\\text{CO}}_{3}^{2-}$</annotation>\n </semantics></math>], [<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>Ca</mtext>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{Ca}}^{2+}$</annotation>\n </semantics></math>]) are in good agreement with <i>in-situ</i> measurements. The data-model agreement constitutes an important step toward a general quantitative biocalcification model applicable to a wide variety of calcifying organisms.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012263","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012263","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Corals exhibit larger and more variable deviations from equilibrium in stable isotope composition ( δ 13 ${\delta }^{13}$ C, δ 18 ${\delta }^{18}$ O, Δ 47 ${{\Delta }}_{47}$ and Δ 48 ${{\Delta }}_{48}$ ) than most marine biocalcifiers. The disequilibrium isotope effects complicate paleoclimate applications but offer a window into biocalcification processes. Here, we merge a Δ 47 ${{\Delta }}_{47}$ - Δ 48 ${{\Delta }}_{48}$ isotope model in the CaCO 3 ${\text{CaCO}}_{3}$ -DIC- H 2 ${\mathrm{H}}_{2}$ O system (Watkins & Devriendt, 2022, https://doi.org/10.1029/2021gc010200) with a coral biomineralization model (Chen et al., 2018, https://doi.org/10.1016/j.gca.2018.02.032) and compare its outputs to recent isotopic measurements. The model simultaneously fits the data from multiple coral species but requires a different set of parameters for deep-sea corals versus tropical corals. We find that: (a) Deviations from dual clumped isotope equilibrium are due primarily to the CO 2 ${\text{CO}}_{2}$ hydration reaction, the reversibility of which is modulated by the enzyme carbonic anhydrase (CA), the strength of the biological proton pump, and the kinetics of calcification. (b) Optimal data-model agreement for both δ 13 ${\delta }^{13}$ C- δ 18 ${\delta }^{18}$ O and Δ 47 ${{\Delta }}_{47}$ - Δ 48 ${{\Delta }}_{48}$ is achieved where CA increases the CO 2 ${\text{CO}}_{2}$ hydration reaction rate by ${\sim} $ 2,000x for deep-sea corals and by 1–500x for tropical corals. (c) The Δ 47 ${{\Delta }}_{47}$ - Δ 48 ${{\Delta }}_{48}$ co-variation slope is sensitive to the cellular CO 2 ${\text{CO}}_{2}$ flux relative to the seawater DIC flux, with higher cellular CO 2 ${\text{CO}}_{2}$ and/or lower seawater throughput favoring a shallower slope. (d) For the most part, the modeled compositions of the calcifying fluids (e.g., pH, [ CO 3 2 ${\text{CO}}_{3}^{2-}$ ], [ Ca 2 + ${\text{Ca}}^{2+}$ ]) are in good agreement with in-situ measurements. The data-model agreement constitutes an important step toward a general quantitative biocalcification model applicable to a wide variety of calcifying organisms.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

双团块同位素的珊瑚生物矿化模型
珊瑚在稳定同位素组成(δ 13 ${\delta }^{13}$ C, δ 18 ${\delta }^{18}$ O,Δ 47 ${{\Delta }}_{47}$和Δ 48 ${{\Delta }}_{48}$)比大多数海洋生物钙化剂要好。不平衡同位素效应使古气候应用复杂化,但为生物钙化过程提供了一个窗口。这里,我们合并了一个Δ 47 ${{\Delta }}_{47}$ - Δ 48 ${{\Delta }}_{48}$同位素模型caco3 ${\text{CaCO}}_{3}$ - dic - h2 ${\mathrm{H}}_{2}$ O体系(Watkins & Devriendt, 2022, https://doi.org/10.1029/2021gc010200)与珊瑚生物矿化模型(Chen et al., 2018;https://doi.org/10.1016/j.gca.2018.02.032),并将其输出与最近的同位素测量结果进行比较。该模型同时拟合来自多种珊瑚物种的数据,但对深海珊瑚和热带珊瑚需要一组不同的参数。我们发现:(a)偏离双团块同位素平衡主要是由于CO 2 ${\text{CO}}_{2}$水化反应,其可逆性由碳酸酐酶(CA)、生物质子泵的强度和钙化动力学调节。(b) δ 13 ${\delta }^{13}$ C- δ 18 ${\delta }^{18}$ O和Δ 47 ${{\Delta }}_{47}$ - Δ 48 ${{\Delta }}_{48}$是在CA增加二氧化碳的情况下实现的${\text{CO}}_{2}$水化反应速率,深海珊瑚降低~ ${\sim} $ 2000倍,热带珊瑚降低1 - 500倍。(c) Δ 47 ${{\Delta }}_{47}$ - Δ 48 ${{\Delta }}_{48}$共变斜率对胞体敏感CO 2 ${\text{CO}}_{2}$通量相对于海水DIC通量,较高的胞体CO 2 ${\text{CO}}_{2}$和/或较低的海水通量有利于较浅的坡度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信