Quantification of microstructure-related uncertainties in structural analysis based on artificial microstructures and the FE 2 $$ {\mathrm{FE}}^2 $$ -method

Q1 Mathematics
Hendrik Dorn, Niklas Miska, Daniel Balzani
{"title":"Quantification of microstructure-related uncertainties in structural analysis based on artificial microstructures and the \n \n \n \n \n FE\n \n \n 2\n \n \n \n $$ {\\mathrm{FE}}^2 $$\n -method","authors":"Hendrik Dorn,&nbsp;Niklas Miska,&nbsp;Daniel Balzani","doi":"10.1002/gamm.70007","DOIUrl":null,"url":null,"abstract":"<p>The characteristics of microstructure morphology of micro-heterogeneous materials may vary over the macroscopic length scale and thus result in macroscopically distributed, uncertain material properties. Hence, multiscale approaches for the structural analysis of such materials, for example, in terms of the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mtext>FE</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{FE}}^2 $$</annotation>\n </semantics></math>-method, should not be based on a single representative volume element. In this contribution a method is proposed, which considers different, artificial statistically similar volume elements at each macroscopic integration point which mimic the microstructure variability of the real material as a random field. For this purpose, the microstructure variation of the real material is quantified first in terms of the distribution of a scalar measure containing deviations of statistical measures of higher order, and then this distribution is used to construct a set of artificial microstructures to be used as volume elements within the multiscale simulation. To avoid manual discretization of the large amount of statistically similar volume elements, the finite cell method is combined with concurrent computational homogenization following the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mtext>FE</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{FE}}^2 $$</annotation>\n </semantics></math>-method. The proposed method is demonstrated for two examples, a simpler tensile experiment for testing purposes and a simplified, idealized deep drawing process.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"48 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.70007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.70007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The characteristics of microstructure morphology of micro-heterogeneous materials may vary over the macroscopic length scale and thus result in macroscopically distributed, uncertain material properties. Hence, multiscale approaches for the structural analysis of such materials, for example, in terms of the FE 2 $$ {\mathrm{FE}}^2 $$ -method, should not be based on a single representative volume element. In this contribution a method is proposed, which considers different, artificial statistically similar volume elements at each macroscopic integration point which mimic the microstructure variability of the real material as a random field. For this purpose, the microstructure variation of the real material is quantified first in terms of the distribution of a scalar measure containing deviations of statistical measures of higher order, and then this distribution is used to construct a set of artificial microstructures to be used as volume elements within the multiscale simulation. To avoid manual discretization of the large amount of statistically similar volume elements, the finite cell method is combined with concurrent computational homogenization following the FE 2 $$ {\mathrm{FE}}^2 $$ -method. The proposed method is demonstrated for two examples, a simpler tensile experiment for testing purposes and a simplified, idealized deep drawing process.

Abstract Image

基于人工微结构和fe2 $$ {\mathrm{FE}}^2 $$ -方法的结构分析中微结构相关不确定度的量化
微观非均相材料的微观形貌特征可能在宏观长度尺度上发生变化,从而导致宏观上分布的、不确定的材料性能。因此,这种材料的结构分析的多尺度方法,例如,在fe2 $$ {\mathrm{FE}}^2 $$ -方法方面,不应该基于单一的代表性体积单元。在此贡献中,提出了一种方法,该方法在每个宏观积分点上考虑不同的人工统计相似的体积元,以模拟真实材料的微观结构变化作为随机场。为此,首先将真实材料的微观结构变化量化为包含高阶统计测度偏差的标量测度的分布,然后利用该分布构建一组人工微观结构,作为多尺度模拟中的体积元。为了避免大量统计上相似的体积单元的人工离散化,在fe2 $$ {\mathrm{FE}}^2 $$ -方法之后,将有限单元法与并行计算均匀化相结合。本文给出了两个例子,一个是用于测试目的的简单拉伸实验,另一个是简化的、理想化的拉深过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信