A Review of MXene Memristive Networks: Atomic-Scale Engineering to Neuromorphic System Integration

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuai Yang, Jialin Wang, Dongchen Tan, Nan Sun, Haohao Shi, Sheng Bi, Chengming Jiang
{"title":"A Review of MXene Memristive Networks: Atomic-Scale Engineering to Neuromorphic System Integration","authors":"Shuai Yang,&nbsp;Jialin Wang,&nbsp;Dongchen Tan,&nbsp;Nan Sun,&nbsp;Haohao Shi,&nbsp;Sheng Bi,&nbsp;Chengming Jiang","doi":"10.1002/admt.202500685","DOIUrl":null,"url":null,"abstract":"<p>With the ever-growing demands of artificial intelligence and big data, the advancement of the conventional von Neumann framework is increasingly hindered by limitations in memory and power consumption. The human brain's energy-efficient neural mechanisms (e.g., synaptic plasticity) have driven innovations in brain-inspired computing architectures. Inspired by this, memristors, especially those containing MXenes, can efficiently simulate low-power, high-performance synaptic behaviors. MXenes are known for their tunable surface chemistry and excellent electrical conductivity, enabling the fabrication of superior neuromorphic components under ambient conditions. This study elucidates the effectiveness of MXene memristors in simulating synaptic plasticity and adaptive learning, thoroughly examines the challenges in advancing neuromorphic systems, and outlines future directions, thereby providing new possibilities for revolutionizing artificial intelligence and computing technologies.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 18","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admt.202500685","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the ever-growing demands of artificial intelligence and big data, the advancement of the conventional von Neumann framework is increasingly hindered by limitations in memory and power consumption. The human brain's energy-efficient neural mechanisms (e.g., synaptic plasticity) have driven innovations in brain-inspired computing architectures. Inspired by this, memristors, especially those containing MXenes, can efficiently simulate low-power, high-performance synaptic behaviors. MXenes are known for their tunable surface chemistry and excellent electrical conductivity, enabling the fabrication of superior neuromorphic components under ambient conditions. This study elucidates the effectiveness of MXene memristors in simulating synaptic plasticity and adaptive learning, thoroughly examines the challenges in advancing neuromorphic systems, and outlines future directions, thereby providing new possibilities for revolutionizing artificial intelligence and computing technologies.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

MXene记忆网络综述:神经形态系统集成的原子尺度工程
随着人工智能和大数据需求的不断增长,传统冯·诺伊曼框架的发展越来越受到内存和功耗限制的阻碍。人类大脑的高能效神经机制(例如,突触可塑性)推动了大脑启发计算架构的创新。受此启发,忆阻器,特别是那些含有MXenes的忆阻器,可以有效地模拟低功耗,高性能的突触行为。MXenes以其可调的表面化学和优异的导电性而闻名,能够在环境条件下制造优越的神经形态成分。本研究阐明了MXene记忆电阻器在模拟突触可塑性和适应性学习方面的有效性,深入研究了神经形态系统发展中的挑战,并概述了未来的发展方向,从而为人工智能和计算技术的革命提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信