Assessing the Thermophysical Properties of Gd, Tb, and GdxTb(1-x) Materials for Magnetic Cooling Application

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Prakash Chandra Singh, Pabitra Halder
{"title":"Assessing the Thermophysical Properties of Gd, Tb, and GdxTb(1-x) Materials for Magnetic Cooling Application","authors":"Prakash Chandra Singh,&nbsp;Pabitra Halder","doi":"10.1007/s10948-025-07051-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the thermophysical properties of gadolinium (Gd), terbium (Tb), and their binary compounds Gd<sub>x</sub>Tb<sub>(1-x)</sub> (<i>x</i> = 0.25, 0.50, 0.75) using mean field theory. The study focuses on calculating magnetocaloric parameters, including magnetic entropy, its variation with magnetic field, specific heat, and the adiabatic temperature change, across magnetic field (<i>B</i>) intensities from 0 to 9 T. The findings indicate that the magnetic entropy has a considerable response to the applied magnetic field, demonstrating a 9.28% reduction in magnetic entropy for Gd at a temperature of 300 K when the field strength escalates from 1.5 to 9 T. Tb has a larger <span>\\(\\Delta {S}_{\\text{m}}\\)</span> than Gd under similar conditions. In Gd<sub>x</sub>Tb<sub>(1-x)</sub> compounds, increasing Gd concentration results in a higher Curie temperature, approaching pure Gd, while the peak <span>\\(\\Delta {T}_{\\text{ad}}\\)</span> shows a little decline. The peak values of <span>\\(\\Delta {T}_{\\text{ad}}\\)</span> are 6 K, 5.86 K, and 5.76 K for <i>x</i> values of 0.25, 0.5, and 0.75 in Gd<sub>x</sub>Tb<sub>(1-x)</sub>, respectively, at <i>B</i> 1.5 T. Moreover, Tb demonstrates a significantly higher relative cooling power than Gd, being approximately 34.91% higher at a given <i>B</i> of 1.5 T, whereas Gd and Gd-rich compounds display higher refrigeration capacity in the 250–320 K range. These results provide theoretical insights into the magnetic field–dependent magnetocaloric behavior of Gd, Tb, and Gd<sub>x</sub>Tb<sub>(1-x)</sub> compounds, while highlighting the compositional effects in Gd<sub>x</sub>Tb<sub>(1-x)</sub> compounds.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-07051-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the thermophysical properties of gadolinium (Gd), terbium (Tb), and their binary compounds GdxTb(1-x) (x = 0.25, 0.50, 0.75) using mean field theory. The study focuses on calculating magnetocaloric parameters, including magnetic entropy, its variation with magnetic field, specific heat, and the adiabatic temperature change, across magnetic field (B) intensities from 0 to 9 T. The findings indicate that the magnetic entropy has a considerable response to the applied magnetic field, demonstrating a 9.28% reduction in magnetic entropy for Gd at a temperature of 300 K when the field strength escalates from 1.5 to 9 T. Tb has a larger \(\Delta {S}_{\text{m}}\) than Gd under similar conditions. In GdxTb(1-x) compounds, increasing Gd concentration results in a higher Curie temperature, approaching pure Gd, while the peak \(\Delta {T}_{\text{ad}}\) shows a little decline. The peak values of \(\Delta {T}_{\text{ad}}\) are 6 K, 5.86 K, and 5.76 K for x values of 0.25, 0.5, and 0.75 in GdxTb(1-x), respectively, at B 1.5 T. Moreover, Tb demonstrates a significantly higher relative cooling power than Gd, being approximately 34.91% higher at a given B of 1.5 T, whereas Gd and Gd-rich compounds display higher refrigeration capacity in the 250–320 K range. These results provide theoretical insights into the magnetic field–dependent magnetocaloric behavior of Gd, Tb, and GdxTb(1-x) compounds, while highlighting the compositional effects in GdxTb(1-x) compounds.

磁冷却用Gd、Tb和GdxTb(1-x)材料的热物理性质评估
本文利用平均场理论研究了钆(Gd)、铽(Tb)及其二元化合物GdxTb(1-x) (x = 0.25, 0.50, 0.75)的热物理性质。研究重点计算了在0 ~ 9 t的磁场强度范围内,磁熵、磁熵随磁场的变化、比热和绝热温度的变化等磁热参数。结果表明,磁熵对外加磁场有相当大的响应,为9.28% reduction in magnetic entropy for Gd at a temperature of 300 K when the field strength escalates from 1.5 to 9 T. Tb has a larger \(\Delta {S}_{\text{m}}\) than Gd under similar conditions. In GdxTb(1-x) compounds, increasing Gd concentration results in a higher Curie temperature, approaching pure Gd, while the peak \(\Delta {T}_{\text{ad}}\) shows a little decline. The peak values of \(\Delta {T}_{\text{ad}}\) are 6 K, 5.86 K, and 5.76 K for x values of 0.25, 0.5, and 0.75 in GdxTb(1-x), respectively, at B 1.5 T. Moreover, Tb demonstrates a significantly higher relative cooling power than Gd, being approximately 34.91% higher at a given B of 1.5 T, whereas Gd and Gd-rich compounds display higher refrigeration capacity in the 250–320 K range. These results provide theoretical insights into the magnetic field–dependent magnetocaloric behavior of Gd, Tb, and GdxTb(1-x) compounds, while highlighting the compositional effects in GdxTb(1-x) compounds.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信