Thermal Conductivity Evolution of Sandy Silt Under Thermal–Mechanical Coupling: Insights from the Phase Transition Temperature Zone

IF 2.9 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Jie Zhou, Huade Zhou, Zhenming Shi, Chao Ban, Xin Wang, Chengjun Liu
{"title":"Thermal Conductivity Evolution of Sandy Silt Under Thermal–Mechanical Coupling: Insights from the Phase Transition Temperature Zone","authors":"Jie Zhou,&nbsp;Huade Zhou,&nbsp;Zhenming Shi,&nbsp;Chao Ban,&nbsp;Xin Wang,&nbsp;Chengjun Liu","doi":"10.1007/s10765-025-03647-w","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the evolution of frozen soil thermal conductivity under thermo-mechanical coupling is critical for predicting heat transfer in porous media. In this paper, the thermal conductivity evolution of sandy silt under thermal–mechanical coupling was systematically investigated using a thermal constant analyzer, focusing on the phase transition zone (PTZ, − 0.5 °C, − 1 °C, and − 5 °C). We quantified the effects of temperature (20 °C, − 0.5 °C, − 1 °C, and − 5 °C) and stress ranges (0 kPa, 25 kPa, 50 kPa, and 100 kPa) on thermal conductivity of sandy silt using thermal constant analysis and in-situ magnetic resonance imaging (MRI), while revealing microstructural drivers via pore-scale moisture distribution. The findings demonstrated an asymmetric thermal conductivity evolution between the unfrozen zone and the phase transition zone, with pronounced nonlinear behavior at subzero temperatures. One of the most significant enhancements (up to 55.7 %) occurred in the phase transition zone, where ice formation and stress-optimized particle contact cooperatively promoted heat transfer. The discrete ice crystal (− 0.5 °C) triggered a gradual increase in the thermal conductivity. At − 1 °C, the ice lens body gradually formed a continuous network, causing a sudden jump. Eventually, it was gradually frozen at − 5 °C, and the ice skeletal restructuring enabled steady enhancement through heat path optimization. The phase transition zone led to a significant increase in the microporosity of the sandy silt, forming an interconnected pore network that enhanced the heat transfer pathway. The results provide essential information for evaluating the thermal conductivity of fine-grained soils under freeze–thaw conditions and offer fundamental insights into heat transfer within porous media undergoing phase transition change.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03647-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the evolution of frozen soil thermal conductivity under thermo-mechanical coupling is critical for predicting heat transfer in porous media. In this paper, the thermal conductivity evolution of sandy silt under thermal–mechanical coupling was systematically investigated using a thermal constant analyzer, focusing on the phase transition zone (PTZ, − 0.5 °C, − 1 °C, and − 5 °C). We quantified the effects of temperature (20 °C, − 0.5 °C, − 1 °C, and − 5 °C) and stress ranges (0 kPa, 25 kPa, 50 kPa, and 100 kPa) on thermal conductivity of sandy silt using thermal constant analysis and in-situ magnetic resonance imaging (MRI), while revealing microstructural drivers via pore-scale moisture distribution. The findings demonstrated an asymmetric thermal conductivity evolution between the unfrozen zone and the phase transition zone, with pronounced nonlinear behavior at subzero temperatures. One of the most significant enhancements (up to 55.7 %) occurred in the phase transition zone, where ice formation and stress-optimized particle contact cooperatively promoted heat transfer. The discrete ice crystal (− 0.5 °C) triggered a gradual increase in the thermal conductivity. At − 1 °C, the ice lens body gradually formed a continuous network, causing a sudden jump. Eventually, it was gradually frozen at − 5 °C, and the ice skeletal restructuring enabled steady enhancement through heat path optimization. The phase transition zone led to a significant increase in the microporosity of the sandy silt, forming an interconnected pore network that enhanced the heat transfer pathway. The results provide essential information for evaluating the thermal conductivity of fine-grained soils under freeze–thaw conditions and offer fundamental insights into heat transfer within porous media undergoing phase transition change.

热-力耦合作用下砂质粉土导热演化:来自相变温度区的启示
了解冻土热-力耦合作用下导热系数的演化规律对预测多孔介质的传热具有重要意义。本文利用热常数分析仪系统研究了热-力耦合作用下砂质粉土的导热系数演化,重点研究了相变区(PTZ, - 0.5°C, - 1°C和- 5°C)。通过热常数分析和原位磁共振成像(MRI),我们量化了温度(20°C、- 0.5°C、- 1°C和- 5°C)和应力范围(0 kPa、25 kPa、50 kPa和100 kPa)对砂质粉土导热系数的影响,同时通过孔隙尺度的水分分布揭示了微观结构驱动因素。研究结果表明,在非冻结区和相变区之间存在不对称的导热演化,在零下温度下具有明显的非线性行为。其中最显著的增强(高达55.7%)发生在相变区,其中冰的形成和应力优化的颗粒接触共同促进了传热。离散冰晶(- 0.5°C)触发了导热系数的逐渐增加。在−1℃时,冰透镜体逐渐形成连续的网络,引起突然的跳跃。最终,在- 5°C下逐渐冻结,通过热路优化实现了冰骨重构的稳定增强。相变区导致砂质粉土微孔隙度显著增大,形成相互连通的孔隙网络,强化了传热途径。研究结果为评估冻融条件下细粒土的导热性提供了重要信息,并为研究相变过程中多孔介质的传热提供了基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信