Effectiveness of Insulin-Induced umbilical cord stem cells on Seladin-1/APP/GFAP expression in rat hippocampal CA1/CA3 regions following chronic hypoxia
{"title":"Effectiveness of Insulin-Induced umbilical cord stem cells on Seladin-1/APP/GFAP expression in rat hippocampal CA1/CA3 regions following chronic hypoxia","authors":"Gholamreza Hassanzadeh, Soheil Ashouri, Reza Kargar, Atefeh Shamosi, Simin Mahakizadeh","doi":"10.1007/s10735-025-10617-x","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Dementia, a syndrome characterized by cognitive impairment, significantly impacts the global elderly population. Given their paracrine properties, mesenchymal stem cells (MSCs) represent a promising avenue for developing novel treatments for neurodegenerative disorders. Chronic hypoxia models Alzheimer’s disease-like pathology by triggering neuroinflammation and altering key biomarkers. This study evaluated the therapeutic potential of MSCs, insulin-induced MSCs, and insulin in a rat model of Alzheimer’s disease (AD). Forty-eight rats were allocated into eight experimental groups: normoxic control, sham-surgery control, and six hypoxic intervention groups (exposed to 8% O₂). Intraventricular administration of MSCs or insulin-induced MSCs, intranasal administration of insulin, or both insulin and MSCs were used in the intervention groups. Hypoxic exposure significantly elevated pro-inflammatory cytokines (IL-1β, TNF-α) and increased expression of glial fibrillary acidic protein (GFAP) and amyloid precursor protein (APP), while decreasing levels of the neuroprotective factor Seladin-1. Administration of MSCs or Ins-MSCs effectively mitigated these hypoxia-induced alterations. Specifically, treatment with MSCs or Insulin induced-MSCs restored Seladin-1, GFAP, and APP expression levels to those observed in normoxic controls. Furthermore, these treatments attenuated the hypoxia-associated increase in Nissl body pathology within the hippocampal pyramidal cell layer. The most pronounced therapeutic benefits were observed following combined intranasal insulin and intraventricular MSC administration. Consequently, the combinatorial approach of MSCs and insulin warrants further investigation as a potential therapeutic strategy for Alzheimer’s disease. Combining intranasal insulin with insulin-induced MSCs may offer a strategy to target multiple AD pathology pathways.</p>\n </div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-025-10617-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dementia, a syndrome characterized by cognitive impairment, significantly impacts the global elderly population. Given their paracrine properties, mesenchymal stem cells (MSCs) represent a promising avenue for developing novel treatments for neurodegenerative disorders. Chronic hypoxia models Alzheimer’s disease-like pathology by triggering neuroinflammation and altering key biomarkers. This study evaluated the therapeutic potential of MSCs, insulin-induced MSCs, and insulin in a rat model of Alzheimer’s disease (AD). Forty-eight rats were allocated into eight experimental groups: normoxic control, sham-surgery control, and six hypoxic intervention groups (exposed to 8% O₂). Intraventricular administration of MSCs or insulin-induced MSCs, intranasal administration of insulin, or both insulin and MSCs were used in the intervention groups. Hypoxic exposure significantly elevated pro-inflammatory cytokines (IL-1β, TNF-α) and increased expression of glial fibrillary acidic protein (GFAP) and amyloid precursor protein (APP), while decreasing levels of the neuroprotective factor Seladin-1. Administration of MSCs or Ins-MSCs effectively mitigated these hypoxia-induced alterations. Specifically, treatment with MSCs or Insulin induced-MSCs restored Seladin-1, GFAP, and APP expression levels to those observed in normoxic controls. Furthermore, these treatments attenuated the hypoxia-associated increase in Nissl body pathology within the hippocampal pyramidal cell layer. The most pronounced therapeutic benefits were observed following combined intranasal insulin and intraventricular MSC administration. Consequently, the combinatorial approach of MSCs and insulin warrants further investigation as a potential therapeutic strategy for Alzheimer’s disease. Combining intranasal insulin with insulin-induced MSCs may offer a strategy to target multiple AD pathology pathways.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.