Reproducing and extending Brownian motion in optical traps: a computational reimplementation of Volpe and Volpe (2013)

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Eyad I. B. Hamid
{"title":"Reproducing and extending Brownian motion in optical traps: a computational reimplementation of Volpe and Volpe (2013)","authors":"Eyad I. B. Hamid","doi":"10.1140/epjp/s13360-025-06833-9","DOIUrl":null,"url":null,"abstract":"<div><p>We present an independent computational reimplementation of the model for Brownian motion in an optical trap, originally introduced by Volpe and Volpe (Am J Phys 81(3):224–230, 2013). Using an Euler–Maruyama finite difference scheme to integrate the Langevin equation in Python, we successfully reproduce key results including the transition from ballistic to diffusive motion, optical confinement, and velocity autocorrelation decay. Our implementation provides a quantitative validation of the original work. Furthermore, we extend the analysis to include rotational forces (Grier in Nature 424:810–816, 2003), Kramers transitions in a double-well potential (Hänggi et al. in Rev Mod Phys 62(2):251–341, 1990), and stochastic resonance. This study serves as a transparent, pedagogical resource, providing full code and a critical discussion on numerical methods for stochastic dynamics in computational physics education. The core trade-off of our chosen method clarity and simplicity versus the higher accuracy of advanced integrators is explicitly addressed.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06833-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present an independent computational reimplementation of the model for Brownian motion in an optical trap, originally introduced by Volpe and Volpe (Am J Phys 81(3):224–230, 2013). Using an Euler–Maruyama finite difference scheme to integrate the Langevin equation in Python, we successfully reproduce key results including the transition from ballistic to diffusive motion, optical confinement, and velocity autocorrelation decay. Our implementation provides a quantitative validation of the original work. Furthermore, we extend the analysis to include rotational forces (Grier in Nature 424:810–816, 2003), Kramers transitions in a double-well potential (Hänggi et al. in Rev Mod Phys 62(2):251–341, 1990), and stochastic resonance. This study serves as a transparent, pedagogical resource, providing full code and a critical discussion on numerical methods for stochastic dynamics in computational physics education. The core trade-off of our chosen method clarity and simplicity versus the higher accuracy of advanced integrators is explicitly addressed.

光学陷阱中布朗运动的再现和扩展:Volpe和Volpe的计算再实现(2013)
我们提出了一个独立的计算重新实现的布朗运动的光阱模型,最初由Volpe和Volpe (Am J Phys 81(3):224 - 230,2013)。使用Euler-Maruyama有限差分格式在Python中对Langevin方程进行积分,我们成功地重现了关键结果,包括从弹道运动到扩散运动的转变、光约束和速度自相关衰减。我们的实现提供了对原始工作的定量验证。此外,我们将分析扩展到包括旋转力(Grier in Nature 424:810-816, 2003)、双阱势中的Kramers跃迁(Hänggi等人in Rev Mod Phys 62(2): 251-341, 1990)和随机共振。本研究作为一个透明的教学资源,提供了计算物理教育中随机动力学数值方法的完整代码和批判性讨论。我们所选择的方法的清晰度和简单性与高级积分器的更高准确性之间的核心权衡得到了明确的解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信