A Decentralized Peer-to-Peer Framework for Integrated Electricity-Heat-Carbon Sharing Among Multiple Microgrids

IF 6.1 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jie Wang;Hongjie Jia;Xiaolong Jin;Xiaodan Yu;Yunfei Mu;Kai Hou;Wei Wei;Jiarui Zhang;He Meng
{"title":"A Decentralized Peer-to-Peer Framework for Integrated Electricity-Heat-Carbon Sharing Among Multiple Microgrids","authors":"Jie Wang;Hongjie Jia;Xiaolong Jin;Xiaodan Yu;Yunfei Mu;Kai Hou;Wei Wei;Jiarui Zhang;He Meng","doi":"10.35833/MPCE.2024.000618","DOIUrl":null,"url":null,"abstract":"The increasing focus on carbon neutrality has led to heightened interest in multiple microgrids (MGs) due to their potential to significantly reduce emissions by the integrated electricity-heat-carbon sharing among them. In this paper, a decentralized peer-to-peer (P2P) framework for integrated electricity-heat-carbon sharing is proposed to optimize the trading process of multi-energy and carbon among multiple MGs. The proposed framework considers certified emission reductions (CERs) of photovoltaic (PV) systems in each MG, and carbon allocation and trading among multiple MGs. The P2P trading behaviors among multiple MGs are modelled as a non-cooperative game. A decentralized optimization method is then developed using a price-based incentive scheme to solve the non-cooperative game and optimize the transactions of the electricity-heat-carbon jointly. The optimization problem is solved using sub-gradient in a decentralized manner. And the Nash equilibrium of the non-cooperative game is proven to exist uniquely, ensuring the convergence of the model. Furthermore, the proposed decentralized optimization method safeguards the private information of the MGs. Numerical results show that the total operational cost of the MGs and the carbon emissions can be reduced significantly.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1787-1799"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858604","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10858604/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing focus on carbon neutrality has led to heightened interest in multiple microgrids (MGs) due to their potential to significantly reduce emissions by the integrated electricity-heat-carbon sharing among them. In this paper, a decentralized peer-to-peer (P2P) framework for integrated electricity-heat-carbon sharing is proposed to optimize the trading process of multi-energy and carbon among multiple MGs. The proposed framework considers certified emission reductions (CERs) of photovoltaic (PV) systems in each MG, and carbon allocation and trading among multiple MGs. The P2P trading behaviors among multiple MGs are modelled as a non-cooperative game. A decentralized optimization method is then developed using a price-based incentive scheme to solve the non-cooperative game and optimize the transactions of the electricity-heat-carbon jointly. The optimization problem is solved using sub-gradient in a decentralized manner. And the Nash equilibrium of the non-cooperative game is proven to exist uniquely, ensuring the convergence of the model. Furthermore, the proposed decentralized optimization method safeguards the private information of the MGs. Numerical results show that the total operational cost of the MGs and the carbon emissions can be reduced significantly.
多微电网集成电-热-碳共享的分散式点对点框架
对碳中和的日益关注导致对多个微电网(mg)的兴趣增加,因为它们有可能通过它们之间的综合电-热-碳共享来显着减少排放。本文提出了一种分散的点对点(P2P)集成电-热-碳共享框架,以优化多个mg之间的多种能源和碳交易过程。拟议的框架考虑了每个MG中光伏(PV)系统的认证减排(CERs),以及多个MG之间的碳分配和交易。将多个mg之间的P2P交易行为建模为非合作博弈。在此基础上,提出了一种分散优化方法,利用基于价格的激励方案解决非合作博弈,共同优化电-热-碳交易。利用子梯度以分散的方式求解优化问题。证明了非合作对策的纳什均衡是唯一存在的,保证了模型的收敛性。此外,所提出的去中心化优化方法保护了用户的私有信息。数值计算结果表明,该方法可以显著降低机组的总运行成本和碳排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信