{"title":"Intelligent Control in Asymmetric Decision-Making: An Event-Triggered RL Approach for Mismatched Uncertainties","authors":"Xiangnan Zhong;Zhen Ni","doi":"10.1109/TSMC.2025.3583066","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI)-based multiplayer systems have attracted increasing attention across diverse fields. While most research focuses on simultaneous-move multiplayer games to achieve Nash equilibrium, there are complex applications that involve hierarchical decision-making, where certain players act before others. This power asymmetry increases the complexity of strategic interactions, especially in the presence of mismatched uncertainties that can compromise data reliability and decision-making. To this end, this article develops a novel event-triggered reinforcement learning (RL) approach for hierarchical multiplayer systems with mismatched uncertainties. Specifically, by establishing an auxiliary augment system and designing appropriate cost functions for the high-level leader and low-level followers, we reformulate the hierarchical robust control problem as an optimization task within the Stackelberg–Nash game framework. Furthermore, an event-triggered scheme is designed to reduce the computational overhead and a neural-RL-based method is developed to automatically learn the event-triggered control policies for hierarchical players. Theoretical analyses are conducted to 1) demonstrate the stability preservation of the designed robust-optimal transformation; 2) verify the achievement of Stackelberg–Nash equilibrium under the developed event-triggered policies; and 3) guarantee the boundedness of the impulsive closed-loop system. Finally, the simulation studies validate the effectiveness of the developed method.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 10","pages":"7288-7301"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11074753/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI)-based multiplayer systems have attracted increasing attention across diverse fields. While most research focuses on simultaneous-move multiplayer games to achieve Nash equilibrium, there are complex applications that involve hierarchical decision-making, where certain players act before others. This power asymmetry increases the complexity of strategic interactions, especially in the presence of mismatched uncertainties that can compromise data reliability and decision-making. To this end, this article develops a novel event-triggered reinforcement learning (RL) approach for hierarchical multiplayer systems with mismatched uncertainties. Specifically, by establishing an auxiliary augment system and designing appropriate cost functions for the high-level leader and low-level followers, we reformulate the hierarchical robust control problem as an optimization task within the Stackelberg–Nash game framework. Furthermore, an event-triggered scheme is designed to reduce the computational overhead and a neural-RL-based method is developed to automatically learn the event-triggered control policies for hierarchical players. Theoretical analyses are conducted to 1) demonstrate the stability preservation of the designed robust-optimal transformation; 2) verify the achievement of Stackelberg–Nash equilibrium under the developed event-triggered policies; and 3) guarantee the boundedness of the impulsive closed-loop system. Finally, the simulation studies validate the effectiveness of the developed method.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.