Dielectric constant of boro silicate aluminum glasses using AI and radar sensor

IF 3 Q3 Physics and Astronomy
Shaik Kareem Ahmmad , Kurapati Rajagopal , Nazima Siddiqui , Mohd Abdul Muqeet , Gouri R Patil , Ega Chandra Shekhar , P. Hima Bindu
{"title":"Dielectric constant of boro silicate aluminum glasses using AI and radar sensor","authors":"Shaik Kareem Ahmmad ,&nbsp;Kurapati Rajagopal ,&nbsp;Nazima Siddiqui ,&nbsp;Mohd Abdul Muqeet ,&nbsp;Gouri R Patil ,&nbsp;Ega Chandra Shekhar ,&nbsp;P. Hima Bindu","doi":"10.1016/j.rio.2025.100892","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive analysis of the dielectric constant (ε<sub>r</sub>​) of glasses with varying chemical compositions, utilizing artificial intelligence (AI) predictions and experimental validation. An AI model, trained on over 100 glass compositions, was employed to predict ε<sub>r</sub> based on compositional inputs such as SiO<sub>2</sub>-Na<sub>2</sub>O-CaO-B<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>. For the first time, the BGT60TR13C radar sensor was adapted for non-contact dielectric constant measurements, offering a novel methodology for material characterization. To validate the AI predictions and sensor values, two additional experimental techniques were employed: an LCR meter for capacitance-based measurements and the parallel plate capacitor method. Results showed excellent agreement among all methods, confirming the reliability of AI predictions and the accuracy of the experimental techniques. Furthermore, the dielectric constant increased with higher concentrations of network modifiers and secondary network formers. This study highlights the integration of AI and advanced sensing technologies as a powerful hybrid framework for rapid and accurate material characterization, introducing the radar sensor as an innovative tool for dielectric measurements.</div></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":"20 ","pages":"Article 100892"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950125001208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive analysis of the dielectric constant (εr​) of glasses with varying chemical compositions, utilizing artificial intelligence (AI) predictions and experimental validation. An AI model, trained on over 100 glass compositions, was employed to predict εr based on compositional inputs such as SiO2-Na2O-CaO-B2O3-Al2O3. For the first time, the BGT60TR13C radar sensor was adapted for non-contact dielectric constant measurements, offering a novel methodology for material characterization. To validate the AI predictions and sensor values, two additional experimental techniques were employed: an LCR meter for capacitance-based measurements and the parallel plate capacitor method. Results showed excellent agreement among all methods, confirming the reliability of AI predictions and the accuracy of the experimental techniques. Furthermore, the dielectric constant increased with higher concentrations of network modifiers and secondary network formers. This study highlights the integration of AI and advanced sensing technologies as a powerful hybrid framework for rapid and accurate material characterization, introducing the radar sensor as an innovative tool for dielectric measurements.
用AI和雷达传感器测定硼酸铝玻璃的介电常数
本研究利用人工智能(AI)预测和实验验证,对不同化学成分玻璃的介电常数(εr)进行了综合分析。通过对100多种玻璃成分进行训练的人工智能模型,可以根据sio2 - na20 - cao - b2o3 - al2o3等成分输入来预测εr。BGT60TR13C雷达传感器首次适用于非接触式介电常数测量,为材料表征提供了一种新的方法。为了验证人工智能预测和传感器值,采用了两种额外的实验技术:用于基于电容的测量的LCR仪表和平行板电容器方法。结果显示,所有方法之间的一致性非常好,证实了人工智能预测的可靠性和实验技术的准确性。此外,随着网络改性剂和次级网络形成剂浓度的增加,介电常数也随之增加。本研究强调了人工智能和先进传感技术的集成,作为快速准确表征材料的强大混合框架,将雷达传感器作为介电测量的创新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信