{"title":"Cosmological anisotropies with Finsler–Randers geometry and large-scale observations","authors":"J. Praveen, S.K. Narasimhamurthy","doi":"10.1016/j.ascom.2025.101001","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate a cosmological model grounded in Finsler–Randers geometry introducing anisotropic corrections via the Barthel connection and a redshift-dependent parameter of the form <span><math><mrow><mi>η</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>+</mo><mi>n</mi><mi>z</mi></mrow></math></span>. This framework extends standard cosmology by incorporating directional dependencies in spacetime and modifies the evolution of principal cosmological parameters including the Hubble parameter <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, deceleration parameter <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> and dark energy equation of state <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. By fitting the model to current Cosmic Chronometers (CC), Baryon Acoustic Oscillations (BAO), and Pantheon+ supernova datasets, we constrain the anisotropy parameter <span><math><mi>n</mi></math></span> and obtain updated best-fit values for <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>m</mi><mn>0</mn></mrow></msub></math></span>, <span><math><mi>n</mi></math></span> and <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>DE</mi></mrow></msub></math></span>. Our results indicate that the linear anisotropy can lead to non-trivial modifications in cosmic expansion with the predicted Hubble constant <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>68</mn><mo>.</mo><mn>56</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>10</mn></mrow></math></span> km/s/Mpc lying between the Planck and SH0ES values, thereby partially alleviating the Hubble tension. This study demonstrates that geometric anisotropy within the Finsler–Randers framework provides a physically motivated extension to <span><math><mi>Λ</mi></math></span>CDM and offers new possibilities of studying outstanding challenges in modern cosmology in Finsler geometric background.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"54 ","pages":"Article 101001"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133725000745","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate a cosmological model grounded in Finsler–Randers geometry introducing anisotropic corrections via the Barthel connection and a redshift-dependent parameter of the form . This framework extends standard cosmology by incorporating directional dependencies in spacetime and modifies the evolution of principal cosmological parameters including the Hubble parameter , deceleration parameter and dark energy equation of state . By fitting the model to current Cosmic Chronometers (CC), Baryon Acoustic Oscillations (BAO), and Pantheon+ supernova datasets, we constrain the anisotropy parameter and obtain updated best-fit values for , , and . Our results indicate that the linear anisotropy can lead to non-trivial modifications in cosmic expansion with the predicted Hubble constant km/s/Mpc lying between the Planck and SH0ES values, thereby partially alleviating the Hubble tension. This study demonstrates that geometric anisotropy within the Finsler–Randers framework provides a physically motivated extension to CDM and offers new possibilities of studying outstanding challenges in modern cosmology in Finsler geometric background.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.