Tunable mid-infrared ultra-wideband absorption device with annular-square open metamaterials based on VO2 phase change

IF 3 Q2 PHYSICS, CONDENSED MATTER
Jiao Wang , Mengsi Liu , Hua Yang , Zao Yi , Chaojun Tang , Fan Gao , Junqiao Wang , Boxun Li
{"title":"Tunable mid-infrared ultra-wideband absorption device with annular-square open metamaterials based on VO2 phase change","authors":"Jiao Wang ,&nbsp;Mengsi Liu ,&nbsp;Hua Yang ,&nbsp;Zao Yi ,&nbsp;Chaojun Tang ,&nbsp;Fan Gao ,&nbsp;Junqiao Wang ,&nbsp;Boxun Li","doi":"10.1016/j.micrna.2025.208353","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a thermally tunable, ultra-broadband mid-infrared metamaterial absorber based on vanadium dioxide (VO<sub>2</sub>) with a simple annular-square patterned structure. The device, composed of a Ti substrate, a SiO<sub>2</sub> spacer, and a VO<sub>2</sub> functional layer, achieves an outstanding average absorption rate of 98.19 % and a broad bandwidth of 11.67 μm (7.44–19.11 μm) covering the atmospheric window (8–14 μm) when VO<sub>2</sub> is in its metallic phase (342 K). The absorption mechanism is elucidated through impedance matching and electromagnetic field analysis, revealing a combination of localized surface plasmon resonance and Fabry-Perot resonance. The absorber's performance is dynamically tunable with temperature via the VO<sub>2</sub> phase transition and exhibits remarkable insensitivity to incident angle and polarization. Its simple three-layer structure facilitates easier fabrication compared to complex alternatives. This work provides a promising strategy for applications in infrared stealth, thermal radiation, and photothermal conversion.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208353"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a thermally tunable, ultra-broadband mid-infrared metamaterial absorber based on vanadium dioxide (VO2) with a simple annular-square patterned structure. The device, composed of a Ti substrate, a SiO2 spacer, and a VO2 functional layer, achieves an outstanding average absorption rate of 98.19 % and a broad bandwidth of 11.67 μm (7.44–19.11 μm) covering the atmospheric window (8–14 μm) when VO2 is in its metallic phase (342 K). The absorption mechanism is elucidated through impedance matching and electromagnetic field analysis, revealing a combination of localized surface plasmon resonance and Fabry-Perot resonance. The absorber's performance is dynamically tunable with temperature via the VO2 phase transition and exhibits remarkable insensitivity to incident angle and polarization. Its simple three-layer structure facilitates easier fabrication compared to complex alternatives. This work provides a promising strategy for applications in infrared stealth, thermal radiation, and photothermal conversion.

Abstract Image

基于VO2相变的环形方形开放超材料可调谐中红外超宽带吸收装置
我们提出了一种基于二氧化钒(VO2)的热可调谐超宽带中红外超材料吸收体,具有简单的环形方形图案结构。该器件由Ti衬底、SiO2间隔层和VO2功能层组成,在VO2处于金属相(342 K)时,平均吸收率为98.19%,带宽为11.67 μm (7.44-19.11 μm),覆盖大气窗口(8-14 μm)。通过阻抗匹配和电磁场分析阐明了吸收机理,揭示了局域表面等离子体共振和法布里-珀罗共振的结合。吸收剂的性能可以通过VO2相变随温度动态调节,并且对入射角和极化不敏感。与复杂的替代品相比,其简单的三层结构更容易制造。这项工作为红外隐身、热辐射和光热转换等领域的应用提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信