First-principles calculations of a direct Z-scheme AsP/SnSe2 heterojunction with high solar-to-hydrogen efficiency

IF 3 Q2 PHYSICS, CONDENSED MATTER
Xiaoge Zheng, Lijun Luan, Xintong Lv, Siyu Han, Shixu Zhang, Li Duan
{"title":"First-principles calculations of a direct Z-scheme AsP/SnSe2 heterojunction with high solar-to-hydrogen efficiency","authors":"Xiaoge Zheng,&nbsp;Lijun Luan,&nbsp;Xintong Lv,&nbsp;Siyu Han,&nbsp;Shixu Zhang,&nbsp;Li Duan","doi":"10.1016/j.micrna.2025.208348","DOIUrl":null,"url":null,"abstract":"<div><div>Seeking efficient photocatalysts for hydrogen production is one of the effective strategies to mitigate global energy scarcities and environmental degradation. This study investigates the electronic properties, optical properties, and photocatalytic efficiency of the AsP/SnSe<sub>2</sub> van der Waals heterojunction (vdwH) based on first-principles density functional theory (DFT). The results show that the AsP/SnSe<sub>2</sub> vdwH has an indirect bandgap of 0.62 eV and a Type II band structure. Charge density difference calculations reveal the formation of an internal electric field oriented from AsP to SnSe<sub>2</sub> at the heterointerface. Under light excitation, the photogenerated carrier transfer mechanism within the AsP/SnSe<sub>2</sub> heterojunction follows a Z-scheme mechanism, retaining strong redox reaction activity. Additionally, the AsP/SnSe<sub>2</sub> heterostructure exhibits superior visible light absorption performance compared to the two single-layer structures, reaching a maximum of 4.44 × 10<sup>5</sup> cm<sup>−1</sup> in the visible light range. The solar-to-hydrogen efficiency (<span><math><mrow><msub><mi>η</mi><mtext>STH</mtext></msub></mrow></math></span>) of the heterojunction is 20.93 %. Surprisingly, when the compressive strain reaches −4 %, the band edge position of the heterojunction can meet the photocatalytic water splitting potential requirements under full pH conditions, and the <span><math><mrow><msub><mi>η</mi><mtext>STH</mtext></msub></mrow></math></span> reaches as high as 38.55 %, demonstrating that utilizing strain engineering to modulate the photocatalytic performance of heterojunctions constitutes a viable approach. The AsP/SnSe<sub>2</sub> heterojunction holds promise as a strong contender for next generation photocatalysts.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208348"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Seeking efficient photocatalysts for hydrogen production is one of the effective strategies to mitigate global energy scarcities and environmental degradation. This study investigates the electronic properties, optical properties, and photocatalytic efficiency of the AsP/SnSe2 van der Waals heterojunction (vdwH) based on first-principles density functional theory (DFT). The results show that the AsP/SnSe2 vdwH has an indirect bandgap of 0.62 eV and a Type II band structure. Charge density difference calculations reveal the formation of an internal electric field oriented from AsP to SnSe2 at the heterointerface. Under light excitation, the photogenerated carrier transfer mechanism within the AsP/SnSe2 heterojunction follows a Z-scheme mechanism, retaining strong redox reaction activity. Additionally, the AsP/SnSe2 heterostructure exhibits superior visible light absorption performance compared to the two single-layer structures, reaching a maximum of 4.44 × 105 cm−1 in the visible light range. The solar-to-hydrogen efficiency (ηSTH) of the heterojunction is 20.93 %. Surprisingly, when the compressive strain reaches −4 %, the band edge position of the heterojunction can meet the photocatalytic water splitting potential requirements under full pH conditions, and the ηSTH reaches as high as 38.55 %, demonstrating that utilizing strain engineering to modulate the photocatalytic performance of heterojunctions constitutes a viable approach. The AsP/SnSe2 heterojunction holds promise as a strong contender for next generation photocatalysts.
具有高太阳能制氢效率的直接z型AsP/SnSe2异质结的第一性原理计算
寻找高效的光催化剂用于制氢是缓解全球能源短缺和环境恶化的有效策略之一。基于第一性原理密度泛函理论(DFT)研究了AsP/SnSe2范德华异质结(vdwH)的电子性质、光学性质和光催化效率。结果表明,AsP/SnSe2 vdwH具有0.62 eV的间接带隙和II型带结构。电荷密度差计算表明在异质界面处形成了从AsP到SnSe2取向的内部电场。在光激发下,AsP/SnSe2异质结内光生载流子转移机制遵循Z-scheme机制,保持了较强的氧化还原反应活性。此外,与两种单层结构相比,AsP/SnSe2异质结构具有更好的可见光吸收性能,在可见光范围内达到4.44 × 105 cm−1的最大值。异质结的太阳能制氢效率(ηSTH)为20.93%。令人惊讶的是,当压缩应变达到- 4%时,异质结的能带边缘位置可以满足全pH条件下光催化水裂解电位的要求,ηSTH高达38.55%,表明利用应变工程来调节异质结的光催化性能是一种可行的方法。AsP/SnSe2异质结有望成为下一代光催化剂的有力竞争者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信