{"title":"On the critical points of planar polynomial Hamiltonian systems","authors":"Anna Cima, Armengol Gasull, Francesc Mañosas","doi":"10.1016/j.nonrwa.2025.104503","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that the critical points of planar polynomial Hamiltonian vector fields are either centers or points with an even number of hyperbolic sectors. We give a sharp upper bound of the number of centers that these systems can have in terms of the degrees of their components. We also prove that generically the critical points at infinity of their Poincaré compactification are either nodes or have indices <span><math><mrow><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn></mrow></math></span> or 1 and have at most two sectors: both hyperbolic, both elliptic or one of each type. These characteristics are no more true in the non generic situation. Although these results are known we revisit their proofs. The new proofs are shorter and based on a new approach.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104503"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001865","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that the critical points of planar polynomial Hamiltonian vector fields are either centers or points with an even number of hyperbolic sectors. We give a sharp upper bound of the number of centers that these systems can have in terms of the degrees of their components. We also prove that generically the critical points at infinity of their Poincaré compactification are either nodes or have indices or 1 and have at most two sectors: both hyperbolic, both elliptic or one of each type. These characteristics are no more true in the non generic situation. Although these results are known we revisit their proofs. The new proofs are shorter and based on a new approach.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.