A sufficient condition for absence of mass quantization in a chemotaxis system with local sensing

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Yuri Soga
{"title":"A sufficient condition for absence of mass quantization in a chemotaxis system with local sensing","authors":"Yuri Soga","doi":"10.1016/j.nonrwa.2025.104504","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze blowup solutions in infinite time of the Neumann boundary value problem for the fully parabolic chemotaxis system with local sensing:<span><span><span><math><mtable><mtr><mtd><mrow><mo>{</mo><mtable><mtr><mtd><mrow><msub><mi>u</mi><mi>t</mi></msub><mo>=</mo><mstyle><mi>Δ</mi></mstyle><mrow><mo>(</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>v</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mspace></mspace><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><mstyle><mi>Ω</mi></mstyle><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>v</mi><mi>t</mi></msub><mo>=</mo><mstyle><mi>Δ</mi></mstyle><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><mstyle><mi>Ω</mi></mstyle><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr></mtable></mrow></mtd></mtr></mtable></math></span></span></span>where <span><math><mstyle><mi>Ω</mi></mstyle></math></span> is a ball in two-dimensional space and with nonnegative radially symmetric initial data. In the case of the Keller–Segel system which has similar mathematical structures to our system, it was shown that solutions blow up in finite time if and only if <span><math><mrow><mi>L</mi><mi>log</mi><mi>L</mi></mrow></math></span> for the first component <span><math><mi>u</mi></math></span> diverges in finite time. On the other hand, focusing on the variational structure induced by the signal-dependent motility function <span><math><msup><mi>e</mi><mrow><mo>−</mo><mi>v</mi></mrow></msup></math></span>, we show that the unboundedness of <span><math><mrow><msub><mo>∫</mo><mstyle><mi>Ω</mi></mstyle></msub><msup><mi>e</mi><mi>v</mi></msup><mi>d</mi><mi>x</mi></mrow></math></span> for the second component <span><math><mi>v</mi></math></span> gives rise to blowup solutions in infinite time under the assumption of radial symmetry. Moreover we prove mass concentration phenomena at the origin. It is shown that the radially symmetric solutions of our system develop a singularity like a Dirac delta function in infinite time. Here we investigate the weight of this singularity. Consequently it is shown that mass quantization may not occur; that is, the weight of the singularity can exceed <span><math><mrow><mn>8</mn><mi>π</mi></mrow></math></span> under the assumption of a uniform-in-time lower bound for a Lyapunov functional. This type of behavior cannot be observed in the Keller–Segel system.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104504"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001853","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze blowup solutions in infinite time of the Neumann boundary value problem for the fully parabolic chemotaxis system with local sensing:{ut=Δ(evu)inΩ×(0,),vt=Δvv+uinΩ×(0,),where Ω is a ball in two-dimensional space and with nonnegative radially symmetric initial data. In the case of the Keller–Segel system which has similar mathematical structures to our system, it was shown that solutions blow up in finite time if and only if LlogL for the first component u diverges in finite time. On the other hand, focusing on the variational structure induced by the signal-dependent motility function ev, we show that the unboundedness of Ωevdx for the second component v gives rise to blowup solutions in infinite time under the assumption of radial symmetry. Moreover we prove mass concentration phenomena at the origin. It is shown that the radially symmetric solutions of our system develop a singularity like a Dirac delta function in infinite time. Here we investigate the weight of this singularity. Consequently it is shown that mass quantization may not occur; that is, the weight of the singularity can exceed 8π under the assumption of a uniform-in-time lower bound for a Lyapunov functional. This type of behavior cannot be observed in the Keller–Segel system.
局部传感趋化系统质量量化不存在的充分条件
我们分析了具有局部传感的完全抛物型趋化系统的Neumann边值问题的无限时间爆破解:{ut=Δ(e−vu)inΩ×(0,∞),vt=Δv−v+uinΩ×(0,∞),其中Ω是二维空间中的球,具有非负的径向对称初始数据。对于与我们的系统具有相似数学结构的Keller-Segel系统,证明了当且仅当第一分量u的LlogL在有限时间内发散时解在有限时间内爆炸。另一方面,关注由信号相关运动函数e−v引起的变分结构,我们证明了在径向对称的假设下,第二分量v的∫Ωevdx的无界性在无限时间内产生了爆破解。此外,我们还证明了原点处的质量集中现象。证明了该系统的径向对称解在无限时间内具有狄拉克函数的奇异性。这里我们研究这个奇点的权重。结果表明,质量量子化可能不会发生;也就是说,在假设Lyapunov泛函具有一致时间下界的情况下,奇异点的权重可以超过8π。这种行为在Keller-Segel体系中是观察不到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信