Li-based ternary semiconductors: Probing electronic, mechanical, optical, and transport nature from first principles study

IF 3 Q2 PHYSICS, CONDENSED MATTER
Safia Abdullah R Alharbi , Banat Gul , Muhammad Salman Khan , Siti Maisarah Aziz
{"title":"Li-based ternary semiconductors: Probing electronic, mechanical, optical, and transport nature from first principles study","authors":"Safia Abdullah R Alharbi ,&nbsp;Banat Gul ,&nbsp;Muhammad Salman Khan ,&nbsp;Siti Maisarah Aziz","doi":"10.1016/j.micrna.2025.208357","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the optoelectronic, mechanical, and transport properties of LiGaSe<sub>2</sub> and LiGaTe<sub>2</sub> chalcogenides crystallizing in the orthorhombic <em>Pna</em>2<sub>1</sub> phase, employing density functional theory (DFT) with TB-mBJ and WC-GGA functionals. Electronic band structure analysis validates LiGaSe<sub>2</sub> as a direct-band-gap and LiGaTe<sub>2</sub> as an indirect-band-gap semiconductor. Te substitution causes more orbital hybridization and band flattening near the Fermi level. A significant Se/Te-p and Ga-p contributions in the valence band and Ga-s/p activity in the conduction band, while Li is electrostatically passive. LiGaTe<sub>2</sub> has raised visible-region absorption, a greater static dielectric constant, and noticeable plasmonic activity, while LiGaSe<sub>2</sub> provides larger high-energy transitions suitable for UV optics. Mechanical study shows that both compounds are elastically stable and ductile. LiGaTe<sub>2</sub> has greater bulk, shear, and Young's moduli, indicating higher stiffness, anisotropy, and Cauchy pressure. At 700 K, LiGaTe<sub>2</sub> outperforms LiGaSe<sub>2</sub> in Seebeck coefficient and dimensionless figure of merit because of larger energy filtering and lower electronic thermal conductivity, despite lower electrical conductivity. These results indicate that chalcogen substitution influences interatomic interactions, electrical dispersions, and phonon scattering, providing a mechanism for controlling multifunctional features. LiGaTe<sub>2</sub> is a promising semiconductor for thermoelectric and optoelectronic applications, whereas LiGaSe<sub>2</sub> is still useful in UV and electronic transport-sensitive areas.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208357"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the optoelectronic, mechanical, and transport properties of LiGaSe2 and LiGaTe2 chalcogenides crystallizing in the orthorhombic Pna21 phase, employing density functional theory (DFT) with TB-mBJ and WC-GGA functionals. Electronic band structure analysis validates LiGaSe2 as a direct-band-gap and LiGaTe2 as an indirect-band-gap semiconductor. Te substitution causes more orbital hybridization and band flattening near the Fermi level. A significant Se/Te-p and Ga-p contributions in the valence band and Ga-s/p activity in the conduction band, while Li is electrostatically passive. LiGaTe2 has raised visible-region absorption, a greater static dielectric constant, and noticeable plasmonic activity, while LiGaSe2 provides larger high-energy transitions suitable for UV optics. Mechanical study shows that both compounds are elastically stable and ductile. LiGaTe2 has greater bulk, shear, and Young's moduli, indicating higher stiffness, anisotropy, and Cauchy pressure. At 700 K, LiGaTe2 outperforms LiGaSe2 in Seebeck coefficient and dimensionless figure of merit because of larger energy filtering and lower electronic thermal conductivity, despite lower electrical conductivity. These results indicate that chalcogen substitution influences interatomic interactions, electrical dispersions, and phonon scattering, providing a mechanism for controlling multifunctional features. LiGaTe2 is a promising semiconductor for thermoelectric and optoelectronic applications, whereas LiGaSe2 is still useful in UV and electronic transport-sensitive areas.
锂基三元半导体:从第一性原理研究探索电子、机械、光学和输运性质
本研究采用具有TB-mBJ和WC-GGA功能的密度泛函理论(DFT)研究了在正交Pna21相中结晶的LiGaSe2和LiGaTe2硫族化合物的光电、力学和输运性质。电子能带结构分析证实了LiGaSe2为直接带隙半导体,而LiGaTe2为间接带隙半导体。取代在费米能级附近引起更多的轨道杂化和能带扁平化。Se/Te-p和Ga-p在价带中有显著贡献,Ga-s/p在导带中有显著贡献,而Li是静电无源的。LiGaTe2提高了可见光区吸收,更大的静态介电常数和明显的等离子体活性,而LiGaSe2提供了更大的适合紫外光学的高能跃迁。力学研究表明,这两种化合物都具有弹性稳定和延展性。LiGaTe2具有更大的体积、剪切和杨氏模量,表明更高的刚度、各向异性和柯西压力。在700 K时,由于更大的能量滤波和更低的电子导热系数,尽管电导率较低,但LiGaTe2在塞贝克系数和无因次优值方面优于LiGaSe2。这些结果表明,硫取代影响原子间相互作用、电色散和声子散射,为控制多功能特性提供了一种机制。LiGaTe2在热电和光电子应用中是一种很有前途的半导体,而LiGaSe2在紫外线和电子输运敏感领域仍然有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信