Liutex-based flow structure characterization in vibrating downhole hydrocyclone for oil-water-sand multiphase systems

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Xiaoguang Zhang , Heming Wei , Xudong Huang , Baorui Xu , Fan Yu , Lixin Zhao
{"title":"Liutex-based flow structure characterization in vibrating downhole hydrocyclone for oil-water-sand multiphase systems","authors":"Xiaoguang Zhang ,&nbsp;Heming Wei ,&nbsp;Xudong Huang ,&nbsp;Baorui Xu ,&nbsp;Fan Yu ,&nbsp;Lixin Zhao","doi":"10.1016/j.cherd.2025.09.023","DOIUrl":null,"url":null,"abstract":"<div><div>The hydrocyclone, a key component in single-well injection-production (SWIP) systems for downhole oil-water separation (DOWS), faces complex vibrational challenges in wellbore operations. Produced fluids inevitably carry solid sand particles. Yet, existing studies largely ignore the combined effects of vibration and sand - laden conditions, creating a critical research gap. This study employs innovative CFD modelling integrating Mixture model, Discrete Phase Model (DPM), and dynamic mesh techniques to investigate oil-water-sand flow under vibration. Uniquely, we combine the Ω criterion with the advanced Liutex vortex identification method to reveal transformative flow phenomena: vibration shifts vortex structures from conventional Rankine patterns to axially elongated cylindrical forms, accompanied by a transitional zone between the forced and free vortex regions. Vortex cores migrate toward the geometric centre of hydrocyclones, contrasting with off-centre behaviour in static conditions. Crucially, vibration induces a low-pressure zone in the small conical segment that obstructs oil discharge while increasing solid particle residence time by 113 % (0.342 s to 0.728 s)—a previously unreported synergy that impairs separation efficiency.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"222 ","pages":"Pages 340-351"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876225005003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrocyclone, a key component in single-well injection-production (SWIP) systems for downhole oil-water separation (DOWS), faces complex vibrational challenges in wellbore operations. Produced fluids inevitably carry solid sand particles. Yet, existing studies largely ignore the combined effects of vibration and sand - laden conditions, creating a critical research gap. This study employs innovative CFD modelling integrating Mixture model, Discrete Phase Model (DPM), and dynamic mesh techniques to investigate oil-water-sand flow under vibration. Uniquely, we combine the Ω criterion with the advanced Liutex vortex identification method to reveal transformative flow phenomena: vibration shifts vortex structures from conventional Rankine patterns to axially elongated cylindrical forms, accompanied by a transitional zone between the forced and free vortex regions. Vortex cores migrate toward the geometric centre of hydrocyclones, contrasting with off-centre behaviour in static conditions. Crucially, vibration induces a low-pressure zone in the small conical segment that obstructs oil discharge while increasing solid particle residence time by 113 % (0.342 s to 0.728 s)—a previously unreported synergy that impairs separation efficiency.
基于liutex的油水砂多相系统振动水力旋流器流动结构表征
水力旋流器是用于井下油水分离(DOWS)的单井注采(SWIP)系统的关键部件,在井筒作业中面临着复杂的振动挑战。产出的流体不可避免地携带固体砂粒。然而,现有的研究在很大程度上忽略了振动和载沙条件的综合影响,造成了严重的研究空白。本研究采用混合模型、离散相模型(DPM)和动态网格技术相结合的创新性CFD建模方法,研究振动作用下油水砂流动。独特的是,我们将Ω准则与先进的Liutex涡旋识别方法结合起来,揭示了变化的流动现象:振动将涡旋结构从传统的朗肯模式转变为轴向延长的圆柱形形式,并伴随着强迫和自由涡旋区域之间的过渡区。涡旋核心向旋流器的几何中心迁移,与静态条件下的偏离中心行为形成对比。最关键的是,振动在小锥形段中形成了一个低压区,阻碍了油的排出,同时使固体颗粒的停留时间增加了113 %(0.342 s至0.728 s),这是一种以前未被报道过的协同作用,会损害分离效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信