Yipeng Cui , Pengxuan Guan , Jianning Yin , Zehao Zha , Qiming Yu , Zhenwei Wang , Duanyang Geng
{"title":"Influence of maize picking roller surface structure on stalk pulling force","authors":"Yipeng Cui , Pengxuan Guan , Jianning Yin , Zehao Zha , Qiming Yu , Zhenwei Wang , Duanyang Geng","doi":"10.1016/j.biosystemseng.2025.104289","DOIUrl":null,"url":null,"abstract":"<div><div>During the maize ear harvesting process, a reasonable selection of the picking roller's surface structure can significantly enhance stalk pulling force, reduce ear-picking losses, and improve overall harvesting efficiency. Investigating the influence of different picking roller surface structures on stalk pulling force is therefore of critical importance. In this study, a simulation model was developed based on the Discrete Element Method (DEM) and Multi-Body Dynamics (MBD) to simulate the interaction mechanisms between the ear-picking device and maize stalks. The accuracy of the simulation model was validated through bench tests, using maximum stalk pulling force and power consumption as key evaluation metrics, with relative errors of 5.4 % and 5.2 %, respectively. The study further explored the effects of picking roller surface structure (pattern shape, pattern height and pattern spacing) on stalk pulling force. The results indicate that pattern shape, pattern height, pattern spacing, and their interactions have a significant impact on stalk pulling force. The optimal surface structure of the picking roller is a inclined pattern structure with a pattern height of 2.5 mm and a pattern spacing of 8 mm. The simulation results can be used to analyse the effect of the picking roller surface structure on stalk pulling force, providing a theoretical basis for the rational selection of picking roller surface structures.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"259 ","pages":"Article 104289"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511025002259","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
During the maize ear harvesting process, a reasonable selection of the picking roller's surface structure can significantly enhance stalk pulling force, reduce ear-picking losses, and improve overall harvesting efficiency. Investigating the influence of different picking roller surface structures on stalk pulling force is therefore of critical importance. In this study, a simulation model was developed based on the Discrete Element Method (DEM) and Multi-Body Dynamics (MBD) to simulate the interaction mechanisms between the ear-picking device and maize stalks. The accuracy of the simulation model was validated through bench tests, using maximum stalk pulling force and power consumption as key evaluation metrics, with relative errors of 5.4 % and 5.2 %, respectively. The study further explored the effects of picking roller surface structure (pattern shape, pattern height and pattern spacing) on stalk pulling force. The results indicate that pattern shape, pattern height, pattern spacing, and their interactions have a significant impact on stalk pulling force. The optimal surface structure of the picking roller is a inclined pattern structure with a pattern height of 2.5 mm and a pattern spacing of 8 mm. The simulation results can be used to analyse the effect of the picking roller surface structure on stalk pulling force, providing a theoretical basis for the rational selection of picking roller surface structures.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.