Material card’s identification by inverse method and multi-scale optimization approach through eigenmode analysis of unidirectional Elium®/flax laminated biocomposites

IF 7 Q2 MATERIALS SCIENCE, COMPOSITES
Ameny Ketata , Zouhaier Jendli , Mondher Haggui , Abderrahim El Mahi , Anas Bouguehca , Mohamed Haddar
{"title":"Material card’s identification by inverse method and multi-scale optimization approach through eigenmode analysis of unidirectional Elium®/flax laminated biocomposites","authors":"Ameny Ketata ,&nbsp;Zouhaier Jendli ,&nbsp;Mondher Haggui ,&nbsp;Abderrahim El Mahi ,&nbsp;Anas Bouguehca ,&nbsp;Mohamed Haddar","doi":"10.1016/j.jcomc.2025.100647","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a mixed finite element method (FEM) and experimental inverse identification approach for determining the ply-level elastic properties of unidirectional (UD) Elium®/flax composites. Using the global dynamic response of UD laminates, the intrinsic mechanical properties are identified. Material uncertainties are accounted for, and engineering constants are determined over a broad frequency range through a response surface methodology (RSM)-based sensitivity analysis and meta-modeling approach. A multi-objective optimization process based on a non-dominated sorting genetic algorithm (NSGA) is employed to minimize differences between experimental and numerical frequency responses. The sensitivity analysis reveals that the first seven vibration modes are primarily influenced by the longitudinal modulus (<em>E</em><sub>1</sub>) and the shear modulus (<em>G</em><sub>12</sub>), with <em>E</em><sub>1</sub> having a dominant effect in UD configurations. The optimization process, conducted using HyperStudy™, demonstrates good agreement between the numerical and experimental frequencies. However, the use of a global error function reveals certain limitations, as it may fail to smooth out local deviations, making it challenging to precisely identify mismatches in individual vibration modes. In summary, these findings provide valuable insights into the dynamic behavior of Elium®/flax composites and offer a robust method for determining material properties card for future complex composite structures.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"18 ","pages":"Article 100647"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a mixed finite element method (FEM) and experimental inverse identification approach for determining the ply-level elastic properties of unidirectional (UD) Elium®/flax composites. Using the global dynamic response of UD laminates, the intrinsic mechanical properties are identified. Material uncertainties are accounted for, and engineering constants are determined over a broad frequency range through a response surface methodology (RSM)-based sensitivity analysis and meta-modeling approach. A multi-objective optimization process based on a non-dominated sorting genetic algorithm (NSGA) is employed to minimize differences between experimental and numerical frequency responses. The sensitivity analysis reveals that the first seven vibration modes are primarily influenced by the longitudinal modulus (E1) and the shear modulus (G12), with E1 having a dominant effect in UD configurations. The optimization process, conducted using HyperStudy™, demonstrates good agreement between the numerical and experimental frequencies. However, the use of a global error function reveals certain limitations, as it may fail to smooth out local deviations, making it challenging to precisely identify mismatches in individual vibration modes. In summary, these findings provide valuable insights into the dynamic behavior of Elium®/flax composites and offer a robust method for determining material properties card for future complex composite structures.
基于单向Elium®/亚麻层合生物复合材料特征模态分析的材料卡片逆向识别和多尺度优化方法
本文提出了一种混合有限元法(FEM)和实验反识别方法来确定单向(UD) Elium®/亚麻复合材料的弹性性能。利用UD层合板的整体动力响应,确定了UD层合板的内在力学性能。通过基于响应面法(RSM)的灵敏度分析和元建模方法,考虑了材料的不确定性,并在较宽的频率范围内确定了工程常数。采用基于非支配排序遗传算法(NSGA)的多目标优化过程最小化实验频率响应与数值频率响应的差异。灵敏度分析表明,前7种振动模式主要受纵向模量(E1)和剪切模量(G12)的影响,其中E1在UD构型中具有主导作用。使用HyperStudy™进行的优化过程证明了数值频率和实验频率之间的良好一致性。然而,使用全局误差函数暴露出一定的局限性,因为它可能无法平滑局部偏差,这使得精确识别单个振动模式的不匹配变得具有挑战性。总之,这些发现为Elium®/亚麻复合材料的动态行为提供了有价值的见解,并为确定未来复杂复合材料结构的材料性能卡提供了可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信