{"title":"Propagation of nonlocal dispersal competition model with seasonal succession","authors":"Yaobin Tang, Zhenzhen Li, Binxiang Dai","doi":"10.1016/j.nonrwa.2025.104502","DOIUrl":null,"url":null,"abstract":"<div><div>The paper considers the dynamical behaviors of two competing species for the case of weak competition with nonlocal dispersal and seasonal succession. We first derive the existence and non-existence of traveling waves connecting the trivial equilibrium and the positive periodic solution by using the method of upper-lower solutions and the asymptotic fixed point theorem. Then we obtain the asymptotic spreading properties of the two competing species with compactly supported initial conditions. Our results demonstrate that a competitively weaker species with a faster spreading speed can drive a competitively stronger but slower-spreading species to extinction.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104502"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146812182500183X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers the dynamical behaviors of two competing species for the case of weak competition with nonlocal dispersal and seasonal succession. We first derive the existence and non-existence of traveling waves connecting the trivial equilibrium and the positive periodic solution by using the method of upper-lower solutions and the asymptotic fixed point theorem. Then we obtain the asymptotic spreading properties of the two competing species with compactly supported initial conditions. Our results demonstrate that a competitively weaker species with a faster spreading speed can drive a competitively stronger but slower-spreading species to extinction.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.