Mechanistic inference of stochastic gene expression from structured single-cell data

IF 2.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Christopher E. Miles
{"title":"Mechanistic inference of stochastic gene expression from structured single-cell data","authors":"Christopher E. Miles","doi":"10.1016/j.coisb.2025.100555","DOIUrl":null,"url":null,"abstract":"<div><div>Single-cell gene expression measurements encode variability spanning molecular noise, cell-to-cell heterogeneity, and technical artifacts. Mechanistic stochastic models provide powerful approaches to disentangle these sources, yet inferring underlying dynamics from standard snapshot sequencing data faces fundamental identifiability limitations. This review focuses on how structured datasets with temporal, spatial, or multimodal features offer constraints to resolve these ambiguities, but they demand more sophisticated models and inference strategies, including machine-learning techniques with inherent tradeoffs. We highlight recent progress in the judicious integration of structured single-cell data, stochastic model development, and innovative inference strategies to extract predictive, gene-level insights. These advances lay the foundation for scaling mechanistic inference upward to regulatory networks and multicellular tissues.</div></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"42 ","pages":"Article 100555"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310025000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell gene expression measurements encode variability spanning molecular noise, cell-to-cell heterogeneity, and technical artifacts. Mechanistic stochastic models provide powerful approaches to disentangle these sources, yet inferring underlying dynamics from standard snapshot sequencing data faces fundamental identifiability limitations. This review focuses on how structured datasets with temporal, spatial, or multimodal features offer constraints to resolve these ambiguities, but they demand more sophisticated models and inference strategies, including machine-learning techniques with inherent tradeoffs. We highlight recent progress in the judicious integration of structured single-cell data, stochastic model development, and innovative inference strategies to extract predictive, gene-level insights. These advances lay the foundation for scaling mechanistic inference upward to regulatory networks and multicellular tissues.
从结构化单细胞数据推断随机基因表达的机制
单细胞基因表达测量编码可变性跨越分子噪声、细胞间异质性和技术伪影。机械随机模型提供了强大的方法来解开这些来源,但从标准快照测序数据推断潜在的动态面临基本的可识别性限制。这篇综述的重点是具有时间、空间或多模态特征的结构化数据集如何提供约束来解决这些模糊性,但它们需要更复杂的模型和推理策略,包括具有固有权衡的机器学习技术。我们强调了最近在结构化单细胞数据、随机模型开发和创新推理策略的明智整合方面取得的进展,以提取预测性的基因水平的见解。这些进展为向上扩展机制推理到调节网络和多细胞组织奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信