Xiaoji Liu , Xueting Sun , Heng Xu , Pengyu Zhao , Teng Sun , Xinyu Zhang , Juan Luo , Quan Yuan
{"title":"Microbial heat reinforcement through enzyme–thermal coupling: A low-carbon biodrying approach for decentralized food waste management","authors":"Xiaoji Liu , Xueting Sun , Heng Xu , Pengyu Zhao , Teng Sun , Xinyu Zhang , Juan Luo , Quan Yuan","doi":"10.1016/j.biteb.2025.102299","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional biodrying of food waste (FW) is often constrained by limited microbial heat generation and high external energy demand, limiting decentralized applications. We developed an enzyme-thermal coupling strategy to enhance microbial thermogenesis and drying efficiency. FW was pretreated with a carbohydrase-protease-lipase blend, then biodried in insulated reactors under intermittent heating (IH) or continuous heating (CH), with microbial activity, moisture removal, and microbial community composition monitored. Enzymatic hydrolysis released over 60 % more soluble organic matter (SCOD increase from 193.4 mg/L to 325.8 mg/L within the first hour), which was associated with a shorter microbial lag phase, as indicated by earlier temperature rise and elevated OUR in the enzyme-treated group. Compared to CH, the IH strategy reduced energy consumption by 69.4 % (1.29 kWh/kg H₂O removed) while achieving a comparable final moisture content of 31.2 %. Carbon intensity decreased from 1.04 to 0.32 kg CO₂/kg FW. Microbial community analysis indicated shifts in composition and functional potential under IH, with enrichment of stress response and degradation pathways. βNTI analysis suggested a greater contribution of stochastic processes, which may support community diversity maintenance. Overall, the enzyme-thermal coupling approach leveraged microbial metabolism as an internal heat source, offering a promising low-carbon and energy-efficient solution for urban household-level organic waste treatment, with potential contributions to circular bioeconomy development and sustainable waste management.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"32 ","pages":"Article 102299"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25002828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional biodrying of food waste (FW) is often constrained by limited microbial heat generation and high external energy demand, limiting decentralized applications. We developed an enzyme-thermal coupling strategy to enhance microbial thermogenesis and drying efficiency. FW was pretreated with a carbohydrase-protease-lipase blend, then biodried in insulated reactors under intermittent heating (IH) or continuous heating (CH), with microbial activity, moisture removal, and microbial community composition monitored. Enzymatic hydrolysis released over 60 % more soluble organic matter (SCOD increase from 193.4 mg/L to 325.8 mg/L within the first hour), which was associated with a shorter microbial lag phase, as indicated by earlier temperature rise and elevated OUR in the enzyme-treated group. Compared to CH, the IH strategy reduced energy consumption by 69.4 % (1.29 kWh/kg H₂O removed) while achieving a comparable final moisture content of 31.2 %. Carbon intensity decreased from 1.04 to 0.32 kg CO₂/kg FW. Microbial community analysis indicated shifts in composition and functional potential under IH, with enrichment of stress response and degradation pathways. βNTI analysis suggested a greater contribution of stochastic processes, which may support community diversity maintenance. Overall, the enzyme-thermal coupling approach leveraged microbial metabolism as an internal heat source, offering a promising low-carbon and energy-efficient solution for urban household-level organic waste treatment, with potential contributions to circular bioeconomy development and sustainable waste management.