Influence of chemical reaction on convective flow in porous medium with varying viscosity generated by internal heat source in thermal non-equilibrium temperature conditions

Q1 Chemical Engineering
Monal Bharty , Atul K. Srivastava , Hrishikesh Mahato , Ashwini Kumar , Mayank Srivastava , Jayant Giri , Eman Ramadan Elsharkawy , Divya Srivastava
{"title":"Influence of chemical reaction on convective flow in porous medium with varying viscosity generated by internal heat source in thermal non-equilibrium temperature conditions","authors":"Monal Bharty ,&nbsp;Atul K. Srivastava ,&nbsp;Hrishikesh Mahato ,&nbsp;Ashwini Kumar ,&nbsp;Mayank Srivastava ,&nbsp;Jayant Giri ,&nbsp;Eman Ramadan Elsharkawy ,&nbsp;Divya Srivastava","doi":"10.1016/j.ijft.2025.101412","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the onset of natural convection in a horizontal fluid-saturated porous medium subject to uniform internal heat generation and chemical reactions under local thermal non-equilibrium (LTNE) temperature conditions. The fluid viscosity is assumed to vary nonlinearly with temperature, capturing realistic thermophysical behavior often encountered in high-temperature and chemically reactive porous systems. Such configurations are frequently encountered in engineering applications, including geothermal energy extraction, thermal insulation in buildings, chemical catalytic reactors, nuclear waste disposal, and porous heat exchangers. In these systems, internal heat generation, chemical reactions, and non-equilibrium heat exchange between fluid and solid phases play a critical role in determining thermal stability and efficiency. The present analysis employs linear stability theory using the normal mode technique, and the resulting eigenvalue problem is solved via the Galerkin-weighted residual method. A comparative study is conducted for three thermal boundary conditions: rigid-rigid <span><math><mrow><mo>(</mo><mi>R</mi><mo>/</mo><mi>R</mi><mo>)</mo></mrow></math></span>, rigid-free <span><math><mrow><mo>(</mo><mi>R</mi><mo>/</mo><mi>F</mi><mo>)</mo></mrow></math></span>, and free-free <span><math><mrow><mo>(</mo><mi>F</mi><mo>/</mo><mi>F</mi><mo>)</mo></mrow></math></span> for the stationary case, while oscillatory instabilities are analyzed for the F/F case. Graphical representations are used to illustrate how the main controlling parameters affect the stationary and oscillatory onset. It is reported that the system is more stable with increasing values of <span><math><mi>H</mi></math></span> (inter-phase heat transfer coefficient) and <span><math><mtext>Da</mtext></math></span> (Darcy number), while it is less stable with increasing values of <span><math><mi>χ</mi></math></span> (Damköhler number), <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (linear viscosity variation parameters), <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (nonlinear viscosity variation parameters), and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> (the fluid heat generation parameter). It is also established that the system is more stable for <span><math><mrow><mi>R</mi><mo>/</mo><mi>R</mi></mrow></math></span> boundary combinations and least stable for <span><math><mrow><mi>F</mi><mo>/</mo><mi>F</mi></mrow></math></span> boundaries.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"30 ","pages":"Article 101412"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the onset of natural convection in a horizontal fluid-saturated porous medium subject to uniform internal heat generation and chemical reactions under local thermal non-equilibrium (LTNE) temperature conditions. The fluid viscosity is assumed to vary nonlinearly with temperature, capturing realistic thermophysical behavior often encountered in high-temperature and chemically reactive porous systems. Such configurations are frequently encountered in engineering applications, including geothermal energy extraction, thermal insulation in buildings, chemical catalytic reactors, nuclear waste disposal, and porous heat exchangers. In these systems, internal heat generation, chemical reactions, and non-equilibrium heat exchange between fluid and solid phases play a critical role in determining thermal stability and efficiency. The present analysis employs linear stability theory using the normal mode technique, and the resulting eigenvalue problem is solved via the Galerkin-weighted residual method. A comparative study is conducted for three thermal boundary conditions: rigid-rigid (R/R), rigid-free (R/F), and free-free (F/F) for the stationary case, while oscillatory instabilities are analyzed for the F/F case. Graphical representations are used to illustrate how the main controlling parameters affect the stationary and oscillatory onset. It is reported that the system is more stable with increasing values of H (inter-phase heat transfer coefficient) and Da (Darcy number), while it is less stable with increasing values of χ (Damköhler number), M1 (linear viscosity variation parameters), M2 (nonlinear viscosity variation parameters), and Qf (the fluid heat generation parameter). It is also established that the system is more stable for R/R boundary combinations and least stable for F/F boundaries.
热非平衡温度条件下由内热源产生的变粘度多孔介质中化学反应对对流流动的影响
本研究研究了在局部热不平衡(LTNE)温度条件下,受均匀内热生成和化学反应影响的水平流体饱和多孔介质中自然对流的发生。假设流体粘度随温度非线性变化,捕捉了高温和化学反应性多孔系统中经常遇到的真实热物理行为。这种配置在工程应用中经常遇到,包括地热能提取、建筑物隔热、化学催化反应堆、核废料处理和多孔热交换器。在这些系统中,内部热的产生、化学反应以及流体和固相之间的非平衡热交换在决定热稳定性和效率方面起着关键作用。本分析采用线性稳定性理论和正态模态技术,并通过伽辽金加权残差法求解得到的特征值问题。对比研究了静止情况下的刚性-刚性(R/R)、刚性-自由(R/F)和自由-自由(F/F)三种热边界条件,分析了F/F情况下的振荡不稳定性。图形表示用于说明主要控制参数如何影响平稳和振荡的开始。据报道,随着H(相间换热系数)和Da(达西数)的增大,系统的稳定性越好,而随着χ (Damköhler数)、M1(线性粘度变化参数)、M2(非线性粘度变化参数)和Qf(流体产热参数)的增大,系统的稳定性越差。同时证明了系统在R/R边界组合下更稳定,在F/F边界组合下最不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信