Darcy–Brinkman–Forchheimer model for natural convection analysis of porous cavity with entropy generation and triangle vanes

Q1 Chemical Engineering
Musa Bahmani , Morteza Babagoli , Payam Jalili , Bahram Jalili , Davood Domiri Ganji
{"title":"Darcy–Brinkman–Forchheimer model for natural convection analysis of porous cavity with entropy generation and triangle vanes","authors":"Musa Bahmani ,&nbsp;Morteza Babagoli ,&nbsp;Payam Jalili ,&nbsp;Bahram Jalili ,&nbsp;Davood Domiri Ganji","doi":"10.1016/j.ijft.2025.101411","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the temperature distribution in solid and fluid phases, stream function, natural convection, and thermal entropy generation. In the current work, the temperature diffusion in the solid and fluid phases, stream function, and entropy generation are all analyzed using the finite element method (FEM). Considerably, several circular heated obstacles exert an effect on thermal performance, including stream function Ψ, and temperature distribution in solid phase θ<sub><em>s</em></sub> and fluid phase θ<sub><em>f</em></sub>, entropy generation. Moreover, to achieve optimal system performance and energy utilization, emphasis should be placed on the detailed examination of influential parameters such as Rayleigh number, Darcy number, Prandtl number, and ε on fluid flow, Nu<sub>f, ave</sub>,  Nu<sub>s, ave</sub>, S<sub>htf, ave</sub>,  S<sub>hts, ave</sub>,  and Ty<sub>ave</sub>. The computation in the results was validated by accurately adapting it to the stream function, temperature diffusion in the solid phase and fluid phase, and various γ for <em>Nu</em><sub><em>f</em>, <em>ave</em></sub> and <em>Nu</em><sub><em>s</em>, <em>ave</em></sub>. Based on numerical results, it was found that there was a noticeable increase in <em>S</em><sub><em>htf</em>, <em>ave</em></sub>,  <em>S</em><sub><em>hts</em>, <em>ave</em></sub>,  <em>Nu</em><sub><em>f</em>, <em>ave</em></sub> and <em>Nu</em><sub><em>s</em>, <em>ave</em></sub> as the Darcy and Rayleigh numbers increased. Conversely, <em>S</em><sub><em>htf</em>, <em>ave</em></sub>,  <em>S</em><sub><em>hts</em>, <em>ave</em></sub>,  <em>Nu</em><sub><em>f</em>, <em>ave</em></sub> and <em>Nu</em><sub><em>s</em>, <em>ave</em></sub> dropped with an increase in ε.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"30 ","pages":"Article 101411"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266620272500357X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the temperature distribution in solid and fluid phases, stream function, natural convection, and thermal entropy generation. In the current work, the temperature diffusion in the solid and fluid phases, stream function, and entropy generation are all analyzed using the finite element method (FEM). Considerably, several circular heated obstacles exert an effect on thermal performance, including stream function Ψ, and temperature distribution in solid phase θs and fluid phase θf, entropy generation. Moreover, to achieve optimal system performance and energy utilization, emphasis should be placed on the detailed examination of influential parameters such as Rayleigh number, Darcy number, Prandtl number, and ε on fluid flow, Nuf, ave,  Nus, ave, Shtf, ave,  Shts, ave,  and Tyave. The computation in the results was validated by accurately adapting it to the stream function, temperature diffusion in the solid phase and fluid phase, and various γ for Nuf, ave and Nus, ave. Based on numerical results, it was found that there was a noticeable increase in Shtf, ave,  Shts, ave,  Nuf, ave and Nus, ave as the Darcy and Rayleigh numbers increased. Conversely, Shtf, ave,  Shts, ave,  Nuf, ave and Nus, ave dropped with an increase in ε.
带熵产和三角叶片的多孔腔自然对流分析的Darcy-Brinkman-Forchheimer模型
本文研究了固体和流体的温度分布、流函数、自然对流和热熵的产生。本文采用有限元方法分析了固相和流相的温度扩散、流函数和熵的产生。在很大程度上,几个圆形受热障碍对热性能有影响,包括流函数Ψ,固相θs和流体相θf的温度分布,熵的产生。此外,为了实现最佳的系统性能和能量利用,应重点详细考察瑞利数、达西数、普朗特数、ε等对流体流动的影响参数,以及Nuf、ave、Nus、ave、Shtf、ave、Shts、ave和Tyave。结果中的计算通过准确地适应流函数、固相和流体相的温度扩散以及Nuf, ave和Nus, ave的各种γ来验证。数值结果表明,随着达西数和瑞利数的增加,Shtf、ave、Shts、ave、Nuf、ave和Nus、ave显著增加。相反,随着ε的增加,Shtf, ave, Shts, ave, Nuf, ave和Nus都有所下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信