Spatially resolved exergy analysis and irreversibility mapping of corn-cob biomass gasification in a concentric-tube allothermal reactor

Q1 Chemical Engineering
Jesús D. Rhenals-Julio , Stiven J. Sofan-Germán , Jorge M. Mendoza-Fandiño , Antonio Bula
{"title":"Spatially resolved exergy analysis and irreversibility mapping of corn-cob biomass gasification in a concentric-tube allothermal reactor","authors":"Jesús D. Rhenals-Julio ,&nbsp;Stiven J. Sofan-Germán ,&nbsp;Jorge M. Mendoza-Fandiño ,&nbsp;Antonio Bula","doi":"10.1016/j.ijft.2025.101410","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a one‑dimensional local exergy analysis is carried out for corn‑cob gasification in a concentric‑tube reactor. The domain is discretized into differential control volumes and closed with exergy balances for the biomass feed, gasifying agent, and heat supplied from the inner combustion zone; outlet streams include syngas, tar, and unconverted char. Physical and chemical exergies are evaluated for all streams, and the physical exergy of volatiles is approximated from water‑vapor properties. A complementary CFD model provides gas composition and temperature fields used for comparison and interpretation. The resulting irreversibility map exhibits two pronounced peaks—near the combustion region and at the devolatilization front—coincident with intense thermal conversion. The total destroyed exergy is 102.8 kW (9.91 % deviation from a reference configuration), while the exergy efficiency is 66.14 % (≈3 % deviation); the cold‑gas efficiency is 31.86 %. These results validate the modeling framework and show that local exergy mapping pinpoints design targets (e.g., heat‑transfer coupling and devolatilization control) to improve reactor performance and syngas quality in biomass gasification.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"30 ","pages":"Article 101410"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a one‑dimensional local exergy analysis is carried out for corn‑cob gasification in a concentric‑tube reactor. The domain is discretized into differential control volumes and closed with exergy balances for the biomass feed, gasifying agent, and heat supplied from the inner combustion zone; outlet streams include syngas, tar, and unconverted char. Physical and chemical exergies are evaluated for all streams, and the physical exergy of volatiles is approximated from water‑vapor properties. A complementary CFD model provides gas composition and temperature fields used for comparison and interpretation. The resulting irreversibility map exhibits two pronounced peaks—near the combustion region and at the devolatilization front—coincident with intense thermal conversion. The total destroyed exergy is 102.8 kW (9.91 % deviation from a reference configuration), while the exergy efficiency is 66.14 % (≈3 % deviation); the cold‑gas efficiency is 31.86 %. These results validate the modeling framework and show that local exergy mapping pinpoints design targets (e.g., heat‑transfer coupling and devolatilization control) to improve reactor performance and syngas quality in biomass gasification.
同心管异热反应器中玉米芯生物质气化的空间分辨火用分析和不可逆性映射
本文对同心管反应器中玉米芯气化过程进行了一维局部火用分析。该区域被离散成不同的控制体积,并与生物质饲料、气化剂和内燃区提供的热量的火用平衡关闭;出口流包括合成气、焦油和未转化的焦炭。对所有流的物理和化学用能进行了评估,挥发物的物理用能是由水蒸气的性质近似得出的。一个互补的CFD模型提供了用于比较和解释的气体成分和温度场。所得的不可逆性图显示出两个明显的峰——靠近燃烧区和在脱挥发前沿——与强烈的热转化相一致。总破坏火用为102.8 kW(与参考配置偏差9.91%),而火用效率为66.14%(偏差≈3%);冷气效率为31.86%。这些结果验证了建模框架,并表明局部火用映射确定了设计目标(例如,传热耦合和脱挥发控制),以改善生物质气化中的反应器性能和合成气质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信