Thermo-hydraulic performance assessment of mono and hybrid ceramic nanofluids in flat plate solar collectors: a CFD-based study

Q1 Chemical Engineering
Abdel Salam Alsabagh , Ismail Masalha , Omer A. Alawi , Zaher Mundher Yaseen , Ali Alahmer
{"title":"Thermo-hydraulic performance assessment of mono and hybrid ceramic nanofluids in flat plate solar collectors: a CFD-based study","authors":"Abdel Salam Alsabagh ,&nbsp;Ismail Masalha ,&nbsp;Omer A. Alawi ,&nbsp;Zaher Mundher Yaseen ,&nbsp;Ali Alahmer","doi":"10.1016/j.ijft.2025.101415","DOIUrl":null,"url":null,"abstract":"<div><div>Ceramic nanoparticles have shown great potential in enhancing renewable energy systems and thermal management systems. This study investigates the thermo-hydraulic performance of mono and hybrid nanofluids synthesized by dispersing Titanium diboride (TiB₂), Boron carbide (B₄C), and a hybrid TiB₂: B₄C blend (20:80 weight ratio) into propylene glycol-water (PG: W, 20:80 wt.%) base fluid, with a fixed nanoparticle concentration of 2 wt.%. The thermophysical properties of the nanofluids were evaluated at three inlet temperatures: 298.15 K, 308.15 K, and 318.15 K. A three-dimensional numerical model was developed using ANSYS 2021R1 to simulate flow behavior over a Reynolds number range of 100–900. Key performance indicators included outlet and surface temperatures, heat transfer coefficient (h<sub>tc</sub>), Nusselt number (Nu), pressure drop (ΔP), absorbed heat (Q<sub>abs</sub>), and energy efficiency (η<sub>eng</sub>). At 298.15 K, the TiB₂: B₄C hybrid nanofluid demonstrated a 4.38 % improvement in thermal conductivity over the base fluid (PG:W) and a 26.3 % reduction in viscosity compared to B₄C, demonstrating a balanced enhancement of thermal and flow properties. While B₄C exhibited the highest heat transfer coefficients (12–19 % above PG:W and 4.8–10.4 % higher than TiB₂:B₄C), its high viscosity resulted in increased pumping demands. In contrast, the hybrid nanofluid achieved energy efficiency up to 10 % higher than PG:W while remaining within 2–5 % of B₄C’s performance. With increasing temperature, all nanofluids exhibited a ∼78 % reduction in pumping power due to decreased viscosity, with TiB₂:B₄C consistently requiring the lowest pumping energy, up to 60 % less than B₄C. These results highlight the TiB₂:B₄C hybrid nanofluid as a thermally efficient and energy-saving alternative for practical heat transfer systems.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"30 ","pages":"Article 101415"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramic nanoparticles have shown great potential in enhancing renewable energy systems and thermal management systems. This study investigates the thermo-hydraulic performance of mono and hybrid nanofluids synthesized by dispersing Titanium diboride (TiB₂), Boron carbide (B₄C), and a hybrid TiB₂: B₄C blend (20:80 weight ratio) into propylene glycol-water (PG: W, 20:80 wt.%) base fluid, with a fixed nanoparticle concentration of 2 wt.%. The thermophysical properties of the nanofluids were evaluated at three inlet temperatures: 298.15 K, 308.15 K, and 318.15 K. A three-dimensional numerical model was developed using ANSYS 2021R1 to simulate flow behavior over a Reynolds number range of 100–900. Key performance indicators included outlet and surface temperatures, heat transfer coefficient (htc), Nusselt number (Nu), pressure drop (ΔP), absorbed heat (Qabs), and energy efficiency (ηeng). At 298.15 K, the TiB₂: B₄C hybrid nanofluid demonstrated a 4.38 % improvement in thermal conductivity over the base fluid (PG:W) and a 26.3 % reduction in viscosity compared to B₄C, demonstrating a balanced enhancement of thermal and flow properties. While B₄C exhibited the highest heat transfer coefficients (12–19 % above PG:W and 4.8–10.4 % higher than TiB₂:B₄C), its high viscosity resulted in increased pumping demands. In contrast, the hybrid nanofluid achieved energy efficiency up to 10 % higher than PG:W while remaining within 2–5 % of B₄C’s performance. With increasing temperature, all nanofluids exhibited a ∼78 % reduction in pumping power due to decreased viscosity, with TiB₂:B₄C consistently requiring the lowest pumping energy, up to 60 % less than B₄C. These results highlight the TiB₂:B₄C hybrid nanofluid as a thermally efficient and energy-saving alternative for practical heat transfer systems.
平板太阳能集热器中单一和混合陶瓷纳米流体的热水力性能评估:基于cfd的研究
陶瓷纳米颗粒在增强可再生能源系统和热管理系统方面显示出巨大的潜力。研究了将二硼化钛(tib2)、碳化硼(B₄C)和tib2: B₄C(重量比为20:80)的杂化纳米流体分散到丙二醇-水(PG: W, 20:80 wt.%)基液中,纳米颗粒浓度固定为2 wt.%,制备的单纳米流体和杂化纳米流体的热水力性能。在298.15 K、308.15 K和318.15 K三个入口温度下,对纳米流体的热物理性质进行了评价。利用ANSYS 2021R1建立了三维数值模型,模拟了雷诺数100-900范围内的流动特性。关键性能指标包括出口和表面温度、传热系数(htc)、努赛尔数(Nu)、压降(ΔP)、吸热(Qabs)和能效(ηeng)。在298.15 K时,tib2: B₄C杂化纳米流体的导热性比基液(PG:W)提高了4.38%,粘度比B₄C降低了26.3%,显示出热学和流动性能的平衡增强。虽然B₄C的传热系数最高(比PG:W高12 - 19%,比tib2:B₄C高4.8 - 10.4%),但其高粘度导致泵送需求增加。相比之下,混合纳米流体的能量效率比PG:W高出10%,同时保持在B₄C性能的2 - 5%以内。随着温度的升高,由于粘度的降低,所有纳米流体的泵送功率都降低了~ 78%,其中tib2:B₄C始终需要最低的泵送能量,比B₄C低60%。这些结果突出了TiB₂:B₄C杂化纳米流体作为实际传热系统的热效率和节能替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信