Hu Zhou , Ange Lu , Cheng Zheng , Yiwen Wang , Xiangshao Kong , Weiguo Wu
{"title":"Experimental and numerical approach of afterburning effects in fuel-rich explosives within confined spaces","authors":"Hu Zhou , Ange Lu , Cheng Zheng , Yiwen Wang , Xiangshao Kong , Weiguo Wu","doi":"10.1016/j.dt.2025.05.009","DOIUrl":null,"url":null,"abstract":"<div><div>The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen, releasing additional energy through a phenomenon known as the afterburning effect. This process greatly influences the evolution of confined blast loading and the subsequent structural response, which is crucial in confined blast scenarios. Given the complex nature of the reaction process, accurate analysis of the afterburning effect remains challenging. Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation. This study introduces a three-dimensional model to effectively characterize the combustion of detonation products. The model integrates chemical reaction source terms into the governing equations to consider the combustion processes. Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces. Approximately 50% of the energy was released during the combustion of detonation products in a confined TNT explosion. Although the combustion of these products was much slower than the detonation process, it aligned with the dynamic response of the structure, which enhanced the explosive yield. Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%. Following the inclusion of afterburning, the simulated quasi-static pressure increased by approximately 45%. Subsequent comparisons highlighted the merits of the proposed approach over conventional methods. This approach eliminates the reliance on empirical parameters, such as the amount and rate of energy release during afterburning, thereby laying the foundation for understanding load evolution in more complex environments, such as ships, buildings, and underground tunnels.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"51 ","pages":"Pages 67-79"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914725001564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen, releasing additional energy through a phenomenon known as the afterburning effect. This process greatly influences the evolution of confined blast loading and the subsequent structural response, which is crucial in confined blast scenarios. Given the complex nature of the reaction process, accurate analysis of the afterburning effect remains challenging. Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation. This study introduces a three-dimensional model to effectively characterize the combustion of detonation products. The model integrates chemical reaction source terms into the governing equations to consider the combustion processes. Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces. Approximately 50% of the energy was released during the combustion of detonation products in a confined TNT explosion. Although the combustion of these products was much slower than the detonation process, it aligned with the dynamic response of the structure, which enhanced the explosive yield. Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%. Following the inclusion of afterburning, the simulated quasi-static pressure increased by approximately 45%. Subsequent comparisons highlighted the merits of the proposed approach over conventional methods. This approach eliminates the reliance on empirical parameters, such as the amount and rate of energy release during afterburning, thereby laying the foundation for understanding load evolution in more complex environments, such as ships, buildings, and underground tunnels.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.