{"title":"Programmable quasi-zero stiffness triaxial low-frequency isolator empowered by inverse design of Fourier-series beams and metastructure customization","authors":"Xingyu Chen , Liye Zhao , Jiawen Xu , Luxiang Xu , Ning Guo","doi":"10.1016/j.tws.2025.113964","DOIUrl":null,"url":null,"abstract":"<div><div>In modern precision manufacturing and metrology systems, low-frequency vibration isolation is a critical component. Compared to linear isolators, quasi-zero stiffness (QZS) nonlinear isolators offer the advantages of high static stiffness and low dynamic stiffness. In this study, a metastructure-based triaxial low-frequency isolator is developed based on the QZS principle. Specifically, an intuitively interpretable Fourier-series (FS) curved beam is first proposed as a monolithic QZS compliant mechanism. Importantly, a deep learning (DL)-based inverse design method is introduced to directly map the desired force-displacement responses to structural design parameters, enabling rapid design of QZS FS beams. Next, building blocks A and B are then designed based on the inverse-designed QZS FS beam to create metastructure unit cells. Two orthogonally stacked unit cells constitute the minimal configuration of the QZS triaxial isolator. A static model of the FS beam and a dynamic model of the isolator are developed to investigate the QZS features and vibration isolation performance. The triaxial metastructure isolator achieves QZS programmability and high integration while retaining the advantages of miniaturization and compactness. Finally, an isolator prototype through QZS programming (FS beam tailoring and unit cell matrix arrangement) is fabricated for triaxial vibration isolation testing. The results show that the proposed QZS triaxial isolator exhibits effective isolation performance against low-frequency disturbances along the <span><math><mi>x</mi></math></span>-, <span><math><mi>y</mi></math></span>-, and <span><math><mi>z</mi></math></span>- axes.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"218 ","pages":"Article 113964"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125010535","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In modern precision manufacturing and metrology systems, low-frequency vibration isolation is a critical component. Compared to linear isolators, quasi-zero stiffness (QZS) nonlinear isolators offer the advantages of high static stiffness and low dynamic stiffness. In this study, a metastructure-based triaxial low-frequency isolator is developed based on the QZS principle. Specifically, an intuitively interpretable Fourier-series (FS) curved beam is first proposed as a monolithic QZS compliant mechanism. Importantly, a deep learning (DL)-based inverse design method is introduced to directly map the desired force-displacement responses to structural design parameters, enabling rapid design of QZS FS beams. Next, building blocks A and B are then designed based on the inverse-designed QZS FS beam to create metastructure unit cells. Two orthogonally stacked unit cells constitute the minimal configuration of the QZS triaxial isolator. A static model of the FS beam and a dynamic model of the isolator are developed to investigate the QZS features and vibration isolation performance. The triaxial metastructure isolator achieves QZS programmability and high integration while retaining the advantages of miniaturization and compactness. Finally, an isolator prototype through QZS programming (FS beam tailoring and unit cell matrix arrangement) is fabricated for triaxial vibration isolation testing. The results show that the proposed QZS triaxial isolator exhibits effective isolation performance against low-frequency disturbances along the -, -, and - axes.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.