{"title":"The dual codes of two families of BCH codes","authors":"Haojie Xu , Xia Wu , Wei Lu , Xiwang Cao","doi":"10.1016/j.ffa.2025.102721","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present an infinite family of MDS codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span> and two infinite families of almost MDS codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span> for any prime <em>p</em>, by investigating the parameters of the dual codes of two families of BCH codes. Notably, these almost MDS codes include two infinite families of near MDS codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>3</mn></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span>, resolving a conjecture posed by Geng et al. in 2022. Furthermore, we demonstrate that both of these almost MDS codes and their dual codes hold infinite families of 3-designs over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span> for any prime <em>p</em>. Additionally, we study the subfield subcodes of these families of MDS and near MDS codes, and provide several binary, ternary, and quaternary codes with best known parameters.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102721"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001510","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present an infinite family of MDS codes over and two infinite families of almost MDS codes over for any prime p, by investigating the parameters of the dual codes of two families of BCH codes. Notably, these almost MDS codes include two infinite families of near MDS codes over , resolving a conjecture posed by Geng et al. in 2022. Furthermore, we demonstrate that both of these almost MDS codes and their dual codes hold infinite families of 3-designs over for any prime p. Additionally, we study the subfield subcodes of these families of MDS and near MDS codes, and provide several binary, ternary, and quaternary codes with best known parameters.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.