{"title":"Hysteretic performance of steel plate shear wall reinforced with PET-infilled diagonal CFRP multi-layer corrugated plate","authors":"Chu Zhao , Jinguang Yu , Weihui Zhong","doi":"10.1016/j.tws.2025.113968","DOIUrl":null,"url":null,"abstract":"<div><div>To further improve the buckling-restrained effect of carbon fiber reinforced polymer (CFRP) components, several new diagonal CFRP corrugated plate-steel plate composite shear walls are proposed. Taking the conventional steel plate shear wall (SPSW) and the diagonal CFRP corrugated plate-steel plate composite shear wall with adhesive connection (number: S-FRP-A) as the baselines, the diagonal CFRP double-layer corrugated plate-steel plate composite shear wall (number: S-DFRP) and the polyethylene terephthalate (PET) -infilled diagonal CFRP corrugated plate-steel plate composite shear wall (number: S-FRP-PET) with adhesive-bolt hybrid connection are introduced. Then, the seismic performances of the four SPSW structures are compared by the quasi-static cyclic test, and the finite element (FE) analysis is conducted to suggest optimized design schemes. The test results demonstrate that the restrained scheme S-FRP-A reduces the absolute values of the maximum out-of-plane deformation in wall plate by 29.67 %, while the schemes S-DFRP and S-FRP-PET achieve reductions of 63.24 % and 69.91 %. The schemes S-DFRP and S-FRP-PET increased the initial stiffnesses of SPSWs by 17.32 % and 30.78 %, where the scheme S-FRP-PET increased the displacement ductility coefficients and cumulative energy dissipation by 30.81 % and 25.44 %. The FE analysis recommends the PET-infilled full CFRP double-layer corrugated plate-steel plate composite shear wall with trapezoidal corrugated sections as the optimized design scheme.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"218 ","pages":"Article 113968"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125010572","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
To further improve the buckling-restrained effect of carbon fiber reinforced polymer (CFRP) components, several new diagonal CFRP corrugated plate-steel plate composite shear walls are proposed. Taking the conventional steel plate shear wall (SPSW) and the diagonal CFRP corrugated plate-steel plate composite shear wall with adhesive connection (number: S-FRP-A) as the baselines, the diagonal CFRP double-layer corrugated plate-steel plate composite shear wall (number: S-DFRP) and the polyethylene terephthalate (PET) -infilled diagonal CFRP corrugated plate-steel plate composite shear wall (number: S-FRP-PET) with adhesive-bolt hybrid connection are introduced. Then, the seismic performances of the four SPSW structures are compared by the quasi-static cyclic test, and the finite element (FE) analysis is conducted to suggest optimized design schemes. The test results demonstrate that the restrained scheme S-FRP-A reduces the absolute values of the maximum out-of-plane deformation in wall plate by 29.67 %, while the schemes S-DFRP and S-FRP-PET achieve reductions of 63.24 % and 69.91 %. The schemes S-DFRP and S-FRP-PET increased the initial stiffnesses of SPSWs by 17.32 % and 30.78 %, where the scheme S-FRP-PET increased the displacement ductility coefficients and cumulative energy dissipation by 30.81 % and 25.44 %. The FE analysis recommends the PET-infilled full CFRP double-layer corrugated plate-steel plate composite shear wall with trapezoidal corrugated sections as the optimized design scheme.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.