High-fidelity and robust single-qubit gate on a neutral atom using transitionless quantum driving

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Peicheng Liu , Ao-Lin Guo , Hao Wu , Gaoping Feng , Tieling Song , Longfei Guo , Baili Li , Qixian Xie , Zhenyu Xiong , Yifan Dong , Yuan Ren
{"title":"High-fidelity and robust single-qubit gate on a neutral atom using transitionless quantum driving","authors":"Peicheng Liu ,&nbsp;Ao-Lin Guo ,&nbsp;Hao Wu ,&nbsp;Gaoping Feng ,&nbsp;Tieling Song ,&nbsp;Longfei Guo ,&nbsp;Baili Li ,&nbsp;Qixian Xie ,&nbsp;Zhenyu Xiong ,&nbsp;Yifan Dong ,&nbsp;Yuan Ren","doi":"10.1016/j.cjph.2025.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient adiabatic control of quantum states is critical for implementing Rydberg-atom-based quantum computing. While adiabatic techniques offer robustness to experimental fluctuations, their quantum state transfer efficiency is constrained by long evolution times. To address this limitation, we implement transitionless quantum driving (TQD) to accelerate the adiabatic evolution in a ladder-type three-level cesium atom. We demonstrate that TQD achieves high-fidelity single-qubit quantum gate operations while maintaining robustness against decoherence and environmental noises. Numerical simulations reveal that TQD provides a trade-off between fast speed, robustness and high fidelity, surpassing the normal adiabatic method. TQD achieves a quantum state transfer efficiency of over 99.9 %, twice the adiabatic performance metrics, four times faster evolution rates, and 23 % enhanced fidelity in preparing the Rydberg state (F = 0.9993) and coherent superposition states (F = 0.9997), respectively. This work demonstrates TQD on a Rydberg atom, with potential applications in quantum computing system deployment.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"98 ","pages":"Pages 86-98"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325003594","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient adiabatic control of quantum states is critical for implementing Rydberg-atom-based quantum computing. While adiabatic techniques offer robustness to experimental fluctuations, their quantum state transfer efficiency is constrained by long evolution times. To address this limitation, we implement transitionless quantum driving (TQD) to accelerate the adiabatic evolution in a ladder-type three-level cesium atom. We demonstrate that TQD achieves high-fidelity single-qubit quantum gate operations while maintaining robustness against decoherence and environmental noises. Numerical simulations reveal that TQD provides a trade-off between fast speed, robustness and high fidelity, surpassing the normal adiabatic method. TQD achieves a quantum state transfer efficiency of over 99.9 %, twice the adiabatic performance metrics, four times faster evolution rates, and 23 % enhanced fidelity in preparing the Rydberg state (F = 0.9993) and coherent superposition states (F = 0.9997), respectively. This work demonstrates TQD on a Rydberg atom, with potential applications in quantum computing system deployment.

Abstract Image

使用无传递量子驱动的中性原子上的高保真和鲁棒单量子比特门
量子态的有效绝热控制是实现基于里德伯原子的量子计算的关键。虽然绝热技术对实验波动具有鲁棒性,但其量子态转移效率受到长演化时间的限制。为了解决这一限制,我们实现了无瞬态量子驱动(TQD)来加速阶梯型三能级铯原子的绝热演化。我们证明了TQD实现了高保真的单量子比特量子门操作,同时保持了对退相干和环境噪声的鲁棒性。数值模拟结果表明,TQD方法在速度快、鲁棒性好和保真度高之间取得了较好的平衡,优于常规绝热方法。在制备Rydberg态(F = 0.9993)和相干叠加态(F = 0.9997)时,TQD实现了超过99.9%的量子态转移效率,是绝热性能指标的两倍,进化速率提高了4倍,保真度提高了23%。这项工作演示了在里德伯原子上的TQD,在量子计算系统部署中具有潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信