Pengpeng Hu , Guang Zhang , Suan Hu , Xiuquan Zhu , Heng Zhang , Wenping Gong
{"title":"Impact of islands on the cross-shelf transport among the Pearl River Estuary, its adjacent coast and inner shelf","authors":"Pengpeng Hu , Guang Zhang , Suan Hu , Xiuquan Zhu , Heng Zhang , Wenping Gong","doi":"10.1016/j.ocemod.2025.102634","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-shelf transport is crucial for material exchange in the estuary-coast-shelf continuum. This study employs the Coupled Ocean-Atmospheric-Wave-Sediment Transport (COAWST) modeling system to quantify the cross-shelf transport and investigate the influence of islands on the cross-shelf transport between the Pearl River Estuary (PRE), the adjacent coast and the inner shelf. A budget-based method is applied to calculate the cross-shelf volume transport across key interfaces: the estuary-coast interface (the exit between Lantau Island and Macau at the PRE mouth) and the coast-inner shelf interface (25 m isobath). The results show that the Lantau-Macau exit serves as a key transport gateway for estuary-coast exchange, with a net offshore transport of 1.97 × 10<sup>3</sup> m<sup>3</sup> s<sup>−1</sup> in the dry season and 2.61 × 10<sup>3</sup> m<sup>3</sup> s<sup>−1</sup> in the wet season, respectively. The dynamical analysis shows that, at the estuary-coast interface, the islands strengthen the onshore horizontal advection, increasing the net onshore transport by 41.37 % in the dry season, and augment the offshore barotropic gradient, increasing the net offshore transport by 422 % in the wet season. At the coast-inner shelf interface, the cross-shelf transport is onshore at 11.35 × 10<sup>3</sup> m<sup>3</sup> s<sup>−1</sup> during the dry season and offshore at 0.74 × 10<sup>3</sup> m<sup>3</sup> s<sup>−1</sup> during the wet season. During the dry season, the islands enhance both the onshore and offshore transport through increased bottom pressure torque (BPT) and nonlinear advection, respectively, with the two effects nearly balancing each other. However, in the wet season, the islands strengthen the Joint Effect of Baroclinity And Relief (JEBAR), counteracting the advection and making BPT-driven onshore transport to become dominant, thereby enhancing onshore transport by 63 % at this interface. This study has implications for land-ocean interaction research and effective coastal management.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"199 ","pages":"Article 102634"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325001374","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-shelf transport is crucial for material exchange in the estuary-coast-shelf continuum. This study employs the Coupled Ocean-Atmospheric-Wave-Sediment Transport (COAWST) modeling system to quantify the cross-shelf transport and investigate the influence of islands on the cross-shelf transport between the Pearl River Estuary (PRE), the adjacent coast and the inner shelf. A budget-based method is applied to calculate the cross-shelf volume transport across key interfaces: the estuary-coast interface (the exit between Lantau Island and Macau at the PRE mouth) and the coast-inner shelf interface (25 m isobath). The results show that the Lantau-Macau exit serves as a key transport gateway for estuary-coast exchange, with a net offshore transport of 1.97 × 103 m3 s−1 in the dry season and 2.61 × 103 m3 s−1 in the wet season, respectively. The dynamical analysis shows that, at the estuary-coast interface, the islands strengthen the onshore horizontal advection, increasing the net onshore transport by 41.37 % in the dry season, and augment the offshore barotropic gradient, increasing the net offshore transport by 422 % in the wet season. At the coast-inner shelf interface, the cross-shelf transport is onshore at 11.35 × 103 m3 s−1 during the dry season and offshore at 0.74 × 103 m3 s−1 during the wet season. During the dry season, the islands enhance both the onshore and offshore transport through increased bottom pressure torque (BPT) and nonlinear advection, respectively, with the two effects nearly balancing each other. However, in the wet season, the islands strengthen the Joint Effect of Baroclinity And Relief (JEBAR), counteracting the advection and making BPT-driven onshore transport to become dominant, thereby enhancing onshore transport by 63 % at this interface. This study has implications for land-ocean interaction research and effective coastal management.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.