Optimizing the shape parameter in rational RBF partition of unity interpolation

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Roberto Cavoretto
{"title":"Optimizing the shape parameter in rational RBF partition of unity interpolation","authors":"Roberto Cavoretto","doi":"10.1016/j.aml.2025.109766","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we enhance the rational RBF partition of unity (RBF-PU) method presented in Farazandeh and Mirzaei (2021) for shape parameter free RBFs. Here, we propose a leave-one-out cross-validation technique to optimize the RBF shape parameter in the context of rational interpolation. This approach enables us to obtain remarkable results in the rational RBF-PU scheme for shape parameter dependent RBFs. Numerical experiments highlight performance of the rational RBF-PU interpolation, also in comparison to that of the standard method.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109766"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925003167","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we enhance the rational RBF partition of unity (RBF-PU) method presented in Farazandeh and Mirzaei (2021) for shape parameter free RBFs. Here, we propose a leave-one-out cross-validation technique to optimize the RBF shape parameter in the context of rational interpolation. This approach enables us to obtain remarkable results in the rational RBF-PU scheme for shape parameter dependent RBFs. Numerical experiments highlight performance of the rational RBF-PU interpolation, also in comparison to that of the standard method.
单位插值有理RBF分割中形状参数的优化
在本文中,我们增强了Farazandeh和Mirzaei(2021)提出的用于无形状参数RBF的有理RBF划分统一(RBF- pu)方法。在此,我们提出了一种留一交叉验证技术来优化RBF形状参数在有理插值的背景下。这种方法使我们在形状参数相关的RBF-PU方案中获得了显著的结果。数值实验显示了合理的RBF-PU插值方法的性能,并与标准方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信