The large t behaviour of solutions for a new generalized r-th dispersionless Harry Dym equation

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Linlin Gui, Yufeng Zhang
{"title":"The large t behaviour of solutions for a new generalized r-th dispersionless Harry Dym equation","authors":"Linlin Gui,&nbsp;Yufeng Zhang","doi":"10.1016/j.aml.2025.109768","DOIUrl":null,"url":null,"abstract":"<div><div>Manakov and Santini, etc., have solved inverse scattering problem for dispersionless integrable partial differential equations (PDEs), and used these to construct the formal solutions for integrable equations. In this paper, we derive a new equation from a pair of two-dimensional vector fields, termed the generalized r-th dispersionless Harry Dym (g-rdDym) equation, which reduces to the standard (2+1)-dimensional r-th dispersionless Harry Dym (rdDym) equation. Then we construct large <span><math><mi>t</mi></math></span> behaviour of formal solution of Cauchy problem by applying associated Riemann-Hilbert (RH) inverse problem, and describe a new class of particular solutions via the exponential functions. This paper investigates not only the rdDym equation, but also its corresponding generalized equation, i.e. the g-rdDym equation.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109768"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925003180","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Manakov and Santini, etc., have solved inverse scattering problem for dispersionless integrable partial differential equations (PDEs), and used these to construct the formal solutions for integrable equations. In this paper, we derive a new equation from a pair of two-dimensional vector fields, termed the generalized r-th dispersionless Harry Dym (g-rdDym) equation, which reduces to the standard (2+1)-dimensional r-th dispersionless Harry Dym (rdDym) equation. Then we construct large t behaviour of formal solution of Cauchy problem by applying associated Riemann-Hilbert (RH) inverse problem, and describe a new class of particular solutions via the exponential functions. This paper investigates not only the rdDym equation, but also its corresponding generalized equation, i.e. the g-rdDym equation.
一类新的广义r- s无色散Harry Dym方程解的大t行为
Manakov和Santini等人解决了无色散可积偏微分方程的逆散射问题,并利用这些问题构造了可积方程的形式化解。本文从一对二维矢量场中导出了一个新的方程,称为广义无r-次色散Harry Dym (g-rdDym)方程,该方程可简化为标准(2+1)维无r-次色散Harry Dym (rdDym)方程。然后利用相关的Riemann-Hilbert (RH)逆问题构造了Cauchy问题形式解的大t行为,并利用指数函数描述了一类新的特解。本文不仅研究了rdDym方程,还研究了与之相对应的广义方程g-rdDym方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信