Ondřej Bábek , Ondra Sracek , Vojtěch Ettler , Jaroslav Kapusta , Bohdan Kříbek , Martin Mihaljevič , Imasiku Nyambe , Vít Penížek , Aleš Vaněk , Gabriel Ziwa
{"title":"Trends of Cu and Co contaminated sediment dispersal along the Kafue River, the Zambian Copperbelt","authors":"Ondřej Bábek , Ondra Sracek , Vojtěch Ettler , Jaroslav Kapusta , Bohdan Kříbek , Martin Mihaljevič , Imasiku Nyambe , Vít Penížek , Aleš Vaněk , Gabriel Ziwa","doi":"10.1016/j.gexplo.2025.107900","DOIUrl":null,"url":null,"abstract":"<div><div>Rivers are important pathways for metal(loid) contamination in mining areas. The Kafue River flows through the Zambian Copperbelt with nearly a hundred-year history of Cu and Co mining. Nine cores down to 2.5 m deep were drilled in fluvial sediments along a 750-km long river section and analysed for grain size, elemental composition, and mineralogy using extraction tests and scanning electron microscopy with an aim to investigate the spatial and temporal contamination patterns. The silty and fine- to coarse grained sandy sediments were deposited in natural levees, semi-abandoned meanders, and channel bars. They are heavily polluted by Cu reaching ore grade (up to 1.9 %) and Co, with UCC-based enrichment factors (EF) as high as 704 and 60, respectively, which is more than an order of magnitude higher than the most severely impacted large European rivers, and slightly polluted by Pb, As, U and other elements. The main carriers of Cu are malachite, pseudomalachite, secondary Fe oxyhydroxides (ferrihydrite, goethite), sulphides, and Cu-bearing grains of kaolinite, chlorite, and mica. This Cu contamination is traceable (EF up to 13) in sediments 750 km downstream of the Kafue River inflow to the Copperbelt. The contaminated sediments are ~100 cm to ~220 cm thick and their average sediment accumulation rates ~12 to ~27 mm/yr indicating that the contaminated suspended particulate matter can be rapidly deposited along the river, representing a potential environmental hazard. Arsenic and Pb can be scavenged to Fe oxyhydroxides and accumulate in capillary fringe above groundwater level during early diagenesis.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"280 ","pages":"Article 107900"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674225002328","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Rivers are important pathways for metal(loid) contamination in mining areas. The Kafue River flows through the Zambian Copperbelt with nearly a hundred-year history of Cu and Co mining. Nine cores down to 2.5 m deep were drilled in fluvial sediments along a 750-km long river section and analysed for grain size, elemental composition, and mineralogy using extraction tests and scanning electron microscopy with an aim to investigate the spatial and temporal contamination patterns. The silty and fine- to coarse grained sandy sediments were deposited in natural levees, semi-abandoned meanders, and channel bars. They are heavily polluted by Cu reaching ore grade (up to 1.9 %) and Co, with UCC-based enrichment factors (EF) as high as 704 and 60, respectively, which is more than an order of magnitude higher than the most severely impacted large European rivers, and slightly polluted by Pb, As, U and other elements. The main carriers of Cu are malachite, pseudomalachite, secondary Fe oxyhydroxides (ferrihydrite, goethite), sulphides, and Cu-bearing grains of kaolinite, chlorite, and mica. This Cu contamination is traceable (EF up to 13) in sediments 750 km downstream of the Kafue River inflow to the Copperbelt. The contaminated sediments are ~100 cm to ~220 cm thick and their average sediment accumulation rates ~12 to ~27 mm/yr indicating that the contaminated suspended particulate matter can be rapidly deposited along the river, representing a potential environmental hazard. Arsenic and Pb can be scavenged to Fe oxyhydroxides and accumulate in capillary fringe above groundwater level during early diagenesis.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.