Strain-induced effect in magnetic and thermoelectric properties of ferromagnetic half-metal TaPtSi: Material computations

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Beenaben S S , Radha Sankararajan , Srinivasan Manickam , Klinton Brito K
{"title":"Strain-induced effect in magnetic and thermoelectric properties of ferromagnetic half-metal TaPtSi: Material computations","authors":"Beenaben S S ,&nbsp;Radha Sankararajan ,&nbsp;Srinivasan Manickam ,&nbsp;Klinton Brito K","doi":"10.1016/j.physb.2025.417817","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates the impact of tensile and compressive strains on the elastic, electronic, magnetic, and transport properties of the half-Heusler compound TaPtSi, employing density functional theory (DFT) in conjunction with Boltzmann transport calculations. Initially, the cubic crystal structure of the TaPtSi alloy was optimized for various magnetic configurations to determine the most stable magnetic phase. The computed elastic constants confirmed the mechanical stability of TaPtSi under varying isotropic strain conditions. Additionally, the findings revealed that applying isotropic strain alters the electronic structure and energy bandgap of the TaPtSi half-Heusler alloy. The TaPtSi alloy exhibits positive integer total magnetic moment values under different applied strain conditions, indicating ferromagnetic properties. The transport properties, such as the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ), along with the figure of merit (ZT), are computed as functions of temperature ranging from 100K to 1000K under different strain conditions. The figure of merit (ZT) for TaPtSi is 0.13 in its unstrained state and reaches its peak value of 1 at 10 % tensile strain at 1000 K, highlighting the potential of TaPtSi half Heusler alloy as an efficient thermoelectric material for high-temperature applications under isotropic tensile strain. Overall, the results show that the material TaPtSi half-Heusler alloy can be used for both spintronic and thermoelectric application.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417817"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009342","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates the impact of tensile and compressive strains on the elastic, electronic, magnetic, and transport properties of the half-Heusler compound TaPtSi, employing density functional theory (DFT) in conjunction with Boltzmann transport calculations. Initially, the cubic crystal structure of the TaPtSi alloy was optimized for various magnetic configurations to determine the most stable magnetic phase. The computed elastic constants confirmed the mechanical stability of TaPtSi under varying isotropic strain conditions. Additionally, the findings revealed that applying isotropic strain alters the electronic structure and energy bandgap of the TaPtSi half-Heusler alloy. The TaPtSi alloy exhibits positive integer total magnetic moment values under different applied strain conditions, indicating ferromagnetic properties. The transport properties, such as the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ), along with the figure of merit (ZT), are computed as functions of temperature ranging from 100K to 1000K under different strain conditions. The figure of merit (ZT) for TaPtSi is 0.13 in its unstrained state and reaches its peak value of 1 at 10 % tensile strain at 1000 K, highlighting the potential of TaPtSi half Heusler alloy as an efficient thermoelectric material for high-temperature applications under isotropic tensile strain. Overall, the results show that the material TaPtSi half-Heusler alloy can be used for both spintronic and thermoelectric application.
应变对铁磁半金属TaPtSi磁性和热电性能的影响:材料计算
本研究系统地研究了拉伸和压缩应变对半heusler化合物TaPtSi的弹性、电子、磁性和输运性质的影响,采用密度泛函理论(DFT)结合玻尔兹曼输运计算。首先,对TaPtSi合金的立方晶体结构进行了各种磁构型优化,以确定最稳定的磁相。计算得到的弹性常数证实了TaPtSi在不同各向同性应变条件下的力学稳定性。此外,研究结果表明,施加各向同性应变改变了TaPtSi半heusler合金的电子结构和能带。在不同应变条件下,TaPtSi合金的总磁矩值均为正整数,表明其具有铁磁性。在不同的应变条件下,输运特性如塞贝克系数(S)、电导率(σ)、导热系数(κ)以及优值图(ZT)作为温度范围为100K至1000K的函数计算。在非应变状态下,TaPtSi的ZT值为0.13,在1000 K时,当拉伸应变为10%时,ZT值达到峰值1,这表明TaPtSi半Heusler合金在各向同性拉伸应变下作为一种高效的高温热电材料的潜力。结果表明,TaPtSi半heusler合金材料可用于自旋电子和热电应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信