Size-controlled graphene quantum dots with Inherent oxygen-containing groups for enhanced luminescent down-shifting (LDS) performance

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Nilufar Maali, Babak Efafi, Fereidon Alikhani Hesari, Mohamad Javad Eshraghi
{"title":"Size-controlled graphene quantum dots with Inherent oxygen-containing groups for enhanced luminescent down-shifting (LDS) performance","authors":"Nilufar Maali,&nbsp;Babak Efafi,&nbsp;Fereidon Alikhani Hesari,&nbsp;Mohamad Javad Eshraghi","doi":"10.1016/j.physb.2025.417811","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene quantum dots (GQDs) have garnered significant attention as luminescent down-shifting (LDS) materials for photovoltaic applications, owing to their tunable emission properties and exceptional stability. In this study, GQDs were synthesized through the pyrolytic carbonization of citric acid, followed by size control via dialysis, to systematically investigate the effects of particle size and surface functional groups on their optoelectronic properties. Spectroscopic analyses revealed that reducing particle size significantly enhanced photoluminescence intensity and induced a pronounced ∼60 nm blue shift in the emission spectrum, indicating a stronger quantum confinement effect. Fourier-transform infrared spectroscopy confirmed the involvement of surface functional groups in modulating the optical characteristics of the GQDs. Cyclic voltammetry measurements further showed a clear size-dependent variation in the HOMO–LUMO energy gap, supporting the optical observations. These findings highlight the crucial influence of both size and surface chemistry on the optoelectronic behavior of GQDs, providing a scalable strategy for optimizing LDS efficiency.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417811"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009287","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene quantum dots (GQDs) have garnered significant attention as luminescent down-shifting (LDS) materials for photovoltaic applications, owing to their tunable emission properties and exceptional stability. In this study, GQDs were synthesized through the pyrolytic carbonization of citric acid, followed by size control via dialysis, to systematically investigate the effects of particle size and surface functional groups on their optoelectronic properties. Spectroscopic analyses revealed that reducing particle size significantly enhanced photoluminescence intensity and induced a pronounced ∼60 nm blue shift in the emission spectrum, indicating a stronger quantum confinement effect. Fourier-transform infrared spectroscopy confirmed the involvement of surface functional groups in modulating the optical characteristics of the GQDs. Cyclic voltammetry measurements further showed a clear size-dependent variation in the HOMO–LUMO energy gap, supporting the optical observations. These findings highlight the crucial influence of both size and surface chemistry on the optoelectronic behavior of GQDs, providing a scalable strategy for optimizing LDS efficiency.
具有固有含氧基团的尺寸控制石墨烯量子点用于增强发光降移(LDS)性能
石墨烯量子点(GQDs)由于其可调谐的发射特性和优异的稳定性,作为光伏应用的下移发光(LDS)材料受到了广泛的关注。本研究通过柠檬酸热解碳化合成GQDs,再通过透析控制粒径,系统研究粒径和表面官能团对GQDs光电性能的影响。光谱分析表明,减小颗粒尺寸显著增强了光致发光强度,并在发射光谱中诱导了明显的~ 60 nm蓝移,表明量子约束效应更强。傅里叶红外光谱证实了表面官能团参与调制GQDs的光学特性。循环伏安法测量进一步显示了HOMO-LUMO能隙的明显大小依赖性变化,支持了光学观测。这些发现强调了尺寸和表面化学对GQDs光电行为的重要影响,为优化LDS效率提供了可扩展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信